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Kōan. The trouble with likelihood is not the likelihood itself, it’s the log.

1. Introduction

Suppose that you would like to estimate a unimodal density. There are several ex-
ploratory inference approaches that could be employed, notably Cox (1966), Silverman
(1981, 1983) and Hartigan and Hartigan (1985). More recently interest has focused on
maximum likelihood estimation of log concave densities as described by Rufibach (2007),
Walther (2009) and Cule and Samworth (2010), who offer a more direct approach to estima-
tion of strongly unimodal densities as characterized by Ibragimov (1956). Weaker notions
of unimodality have been explored in Koenker and Mizera (2010) and Han and Wellner
(2016). In this note I would like to briefly describe some further experience with these
weaker forms of unimodality and their relevance for both shape constrained estimation
and norm constrained estimation of densities.

Our path leads us away from the well paved highway of maximum likelihood, but it
is arguably more scenic. I will briefly review means of order ρ and their connection to
classes of concave densities and Rényi entropy, and then illustrate their application to
shape constrained and norm constrained density estimation. Further details about the
computational methods are provided in Section 4.

2. Means of order ρ and a Hierarchy of Concave Densities

A natural hierarchy of concave functions can be built on the foundation of the weighted
means of order ρ studied by Hardy, Littlewood and Pólya (1934). For any p in the unit
simplex, S = {p ∈ Rn|p ⩾ 0,

∑
pi = 1}, let

Mρ(a;p) =Mρ(a1, · · · ,an;p) =
( n∑

i=1

pia
ρ
i

)1/ρ
, ρ ̸= 0,
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with M0(a;p) = Mρ(a1, · · · ,an;p) =
∏n

i=1
api

i as a limit as ρ → 0 The familiar arith-
metic, geometric, and harmonic means correspond to ρ equal to 1, 0, and −1, respectively.
Following Avriel (1972), a non-negative, real function f, defined on a convex set C ⊂ Rd

is called ρ-concave if for any x0, x1 ∈ C, and p ∈ S,

f(p0x0 + p1x1) ⩾Mρ(f(x0), f(x1);p).

In this terminology log-concave functions are 0-concave, and concave functions are 1-
concave. Since Mρ(a,p) is monotone increasing in ρ for a ⩾ 0 and any p ∈ S, it follows
that if f is ρ-concave, then f is also ρ ′-concave for any ρ ′ < ρ. Thus, concave functions are
log-concave, but not vice-versa. In the limit −∞-concave functions satisfy the condition

f(p0x0 + p1x1) ⩾ min{f(x0), f(x1)},

so they are quasi-concave, and consequently so are all ρ-concave functions. Further details
and motivation for ρ-concave densities can be found in Prékopa (1973), Borell (1975), and
Dharmadhikari and Joag-Dev (1988).

2.1. Estimation of log concave densities. A probability density function, f, is called log-
concave if − log f is a (proper) convex function on the support of f. Maximum likelihood
estimation of log concave densities can be formulated as a convex optimization problem.
Let X = {X1, · · · ,Xn} be a collection of data points in Rd such that the convex hull of
X, H(X), has a nonempty interior in Rd; such a configuration occurs with probability 1 if
n ⩾ d and the Xi behave like a random sample from f0, a probability density with respect
to the Lebesgue measure on Rd. Setting g = − log f, we can formulate the maximum
likelihood problem as,

(P0) min
g

{ n∑
i=1

g(Xi) |

∫
e−g dx = 1,g ∈ K(X)

}
,

where K(X) denotes the class of closed convex functions on H(X) ⊂ Rd. As shown in
Koenker and Mizera (2010) such problems have solutions that admit a finite dimensional
characterization determined by the function values of �g evaluated at the observed Xi with
values of g elsewhere determined by linear interpolation. This primal problem has an
equivalent dual formulation as,

(D0) max
f

{
−

∫
f log f dy | f = (d(Pn −G))/dy, G ∈ K(X)o

}
,

where K(X)o denotes the polar cone corresponding to K(X), that is,

K(X)o =
{
G ∈ C∗(X) |

∫
gdG ⩽ 0 for all g ∈ K(X)

}
,

and C∗(X) denotes the space of (signed) Radon measures onH(X), its distinguished element
is Pn, the empirical measure supported by the data points {Xi, i = 1, · · · ,Xn}.

It is a notable feature of the log concave MLE that it is tuning parameter free, well posed
without any further need for regularization. This feature carries over to weaker forms of
concave, shape constrained estimators we will consider next. It is hardly surprising in
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view of prior likelihood experience that our dual formulation involves maximizing Shan-
non entropy, since we are already well aware of the close connection to Kullback-Leibler
divergence. One potentially disturbing aspect of foregoing formulation is the finding that
solutions, �g must be piecewise linear, so the estimated density, �f must be piecewise ex-
ponential, which when extrapolated into the tails implies sub-exponential tail behavior.
This finding motivated consideration of weaker forms of concavity that permit heavier tail
behavior as well as more peaked densities. A second, seemingly anomalous feature of the
dual problem is the fact that G must be chosen to annihilate the jumps in Pn in order to
produce a density, f, with respect to Lebesgue measure. Further details on this may be
found in Koenker and Mizera (2010).

2.2. Rényi likelihood and weaker forms of concave densities. Given the appearance of
Shannon entropy in the likelihood formulation of log concave density estimation, it is
natural, or at least tempting, to consider the family of Rényi (1961) entropies,

Rα(f) = (1− α)−1 log(

∫
fα(x)dx)

as a vehicle for estimating ρ-concave densities. Shannon is conveniently nested as α = 1 in
this family. We will focus attention on α < 1, corresponding to ρ = α−1 < 0. Maximizing
Rα(f) with respect to f is equivalent to maximizing, for fixed α < 1,

α−1

∫
fα(x)dx.

This yields the new pairing of primal and dual problems:1

(Pα) min
g

{ n∑
i=1

g(Xi) +
|1− α|

α

∫
gβ dx | g ∈ K(X)

}
,

and

(Dα) max
f

{ 1

α

∫
fα(y)dy | f = d(Pn −G)/dy, G ∈ K(X)o

}
,

with α and β conjugates in the usual sense that α−1 + β−1 = 1.
This formulation weakens the unimodality constraint admitting a larger class of heavier

tailed, more peaked densities; at the same time it modifies the fidelity criterion replacing
log likelihood with a criterion based on Rényi entropy. Why not stick with log likelihood
and just modify the constraint, as suggested by Seregin and Wellner (2010)? The prag-
matic reason is that modifying both preserves an extremely convenient form of the convex
optimization problem. This motivation is further elaborated in Koenker and Mizera (2010).
From a more theoretical perspective weaker concavity requirements pose difficulties for the
standard likelihood formulation, Doss and Wellner (2016) elaborate on these difficulties
and demonstrate among many other things that when imposing concavity constraints with
α < 0 the MLE fails to exist.

1The primal version of this pairing corrects an error in formula (3.7) of Koenker and Mizera (2010) in
the event that α < 0.
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Example 1. In Koenker and Mizera (2010) we stressed the (Hellinger) case that α = 1/2,

so β = −1, and g = −1/
√
f. Since g is constrained to be concave we conclude that the

estimated density, f is ρ-concave for ρ = −1/2, a class that includes all of the Student
t densities with degrees of freedom, ν ⩾ 1, as well as all the log concaves. To illustrate
the applicability of this Hellinger criterion within the Rényi family, we reconsider a density
estimation problem arising in econometrics. Guvenen et al. (2016) have estimated models of
income dynamics using very large (10 percent) samples of U.S. Social Security records linked
to W2 data. Their work reveals quite extreme tail behavior in annual log income increments.
In the left panel of Figure ?? we reproduce the Guvenen et al plot of a conventional kernel
density estimate of the log density of annual increments of log income based on their sample.
Clearly, this density is not log-concave, however when we plot instead −1/

√
f we see that

concavity looks extremely plausible. When the Rényi estimate is superimposed in red, it fits
almost perfectly.

Permitting Cauchy tail behavior may be regarded as sufficiently indulgent for most sta-
tistical purposes, but the next example illustrates that more extreme Rényi fitting criteria
with α < 1/2 is sometimes needed to accommodate sharp peaks in the target density.

Example 2. We reconsider the rotational velocity of stars data considered previously in
Koenker and Mizera (2010). The data was taken originally from Hoffleit and Warren
(1991) and is available from the R package REBayes. Figure ?? illustrates a histogram of
the 3806 positive rotational velocities from the original sample of 3933. After dropping the
127 zero velocity observations, the histogram looks plausibly unimodal and we superimpose
three distinct Rényi shape constrained estimates. The Hellinger (α = 1/2) estimate is
clearly incapable of capturing the sharp peak around x = 18, and even the fit for α = 0

fails to do so. But pressing further, we see that setting α = −2 provides an excellent fit by
constraining −1/f3 to be concave.

3. Rényi likelihood and norm constrained density estimation

Although our original intent for the Rényi likelihood was strictly pragmatic – to maintain
the convexity of the optimization problem underlying the estimation while maintaining
weaker forms of the concavity constraint – I would now like to briefly consider its use
in norm constrained settings where the objective of penalization is smoothness of the
estimated density rather than shape constraint.

There is a long tradition of norm penalized nonparametric maximum likelihood estima-
tion of densities. Perhaps the earliest example is Good (1971) who proposed the penalty,

J(f) =

∫
(
√
f
′
)2dx,

which shrinks the estimated density toward densities with smaller Fisher information for
location. The deeper rationale for this form of shrinkage remains obscure, and most of
the subsequent literature has instead focused on penalizing derivatives of log f, with the
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familiar cubic smoothing spline penalty,

J(f) =

∫
(log f ′′)2dx,

receiving most of the attention. Silverman (1982) proposed penalizing the squared L2 norm
of the third derivative of log f as a means of shrinking toward the Gaussian density.

Squared L2 norm penalties are ideal for smoothly varying densities, but they abhor sharp
bends and kinks, so there has been some interest in exploring total variation penalization
as a way to expand the scope of penalty methods. The taut-string methods of Davies
and Kovac (2001, 2004) penalize total variation of the density itself. Koenker and Mizera
(2007) describe some experience with penalties of the form,

J(f) =

∫
| log f ′′|dx,

that penalize the total variation of the first derivative of log f. In the spirit of Silverman
(1982) the next example illustrates penalization of the total variation of the third derivative
of log f, again with the intent of shrinking toward the Gaussian, but in a manner somewhat
more tolerant of abrupt changes in the derivatives than with Silverman’s squared L2 norm.

Example 3. In Figure ?? we illustrate a histogram based on 500 standard Gaussian obser-
vations, and superimpose two fitted densities estimated by penalizaed maximum likelihood
as solutions to

min
f

{
−

n∑
i=1

log f(Xi) + λ

∫
| log f ′′′|dx,

for two choices of λ. For λ sufficiently large solutions to this problem conform to the
parametric Gaussian MLE since the penalty forces the solution to take a Gaussian shape,
but does not constrain the location or scale of the estimated density. For smaller λ we obtain
a more oscillatory estimate than conforms more closely to the vagaries of the histogram.

Penalizing total variation of log f ′′ as in Figure ?? raises the question: What about other
Rényi exponents for α ̸= 1? Penalizing log f ′′ is implicitly presuming sub-exponential
tail behavior that may be better controlled by weaker Rényi penalties. To explore this
conjecture we consider a in the next example estimating a mixture of three lognormals.

Example 4. Figure ?? illustrates a histogram based on 500 observations from the mixture
of lognormals density depicted in red. I have used this density for several years in class
to illustrate how difficult it can be to choose an effective bandwidth for conventional kernel
density estimation. A bandwidth sufficiently small to distinguish the two left-most modes is
almost surely incapable of producing a smooth fit to the upper mode. Logspline methods as
proposed by Kooperberg and Stone (1991) perform much better in such cases, but they can
be sensitive to knot selection strategies. The methods under consideration here are allied
more closely to the smoothing spline literature, and thereby circumvent the knot selection
task, but in so doing have introduced new knobs to turn and buttons to push. Not only do
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we need to choose the familiar λ, there is now a choice of the order of the derivative in the
penalty, and the Rényi exponent, α, determining the transformation of the density. I would
argue that these choices are more easily adapted to particular applications, but others may
disagree. From a Bayesian perspective, however, it seems indisputable that more diversity
in the class of tractable prior specifications is desirable.

Examining Figure ?? we see that the α = 1 maximum likelihood estimate is a bit too
smooth, failing to find the second mode, whereas the α = 0 solution is too enthusiastic
about the fitting the first mode, but at least does distinguish the second mode. Both methods
produce an excellent fit to the third mode, almost indistinguishable from the true density.

4. Discrete Implementation Details

The discrete formulation of the variational problems described above lead to extremely
efficient algorithms that exploit modern interior point methods for convex optimization.
All of our computational results were carried out with the function medde from the pack-
age REBayes for the R language and available from the CRAN website, https://cran.
r-project.org. This package relies in turn on the Andersen (2010) optimization system
and its Friberg (2012) interface for the R language. The current implementation in medde

is restricted to univariate densities as we will do here as well. Koenker and Mizera (2010)
describes some extensions to bivariate settings. Most of the other functionality of the RE-
Bayes package is devoted to empirical Bayes methods and described in Koenker and Gu
(2016a).

For univariate densities convexity of piecewise linear functions can be enforced by im-
posing linear inequality constraints on the set of function values γi = g(ξi) at selected
points ξ1, ξ2, . . . , ξm. We typically choose these ξi’s on an equally spaced grid of a few
hundred points, and the convex cone constraint can then be expressed as Dγ ⩾ 0 for a
tridiagonal matrix D when the penalization is imposed on second derivatives as in the case
of our concavity constraints, and quindiagonal in the case of third derivative constraints.
By default in medde we choose m = 300, with the ξi’s support extending slightly beyond
the empirical support of the observations.

As described in Koenker and Mizera (2010) the primal formulation of the shape-constrained
problem takes the discrete form,

(P) {w⊤Lγ+ s⊤Ψ(γ)|Dγ ⩾ 0} = min!

where Ψ(γ) denotes anm-vector with typical element ψ(g(ξi)) = ψ(γi), L is an“evaluation
operator” which either selects the elements from γ, or performs the appropriate linear
interpolation from the neighboring ones, so that Lγ denotes the n-vector with typical
element, g(Xi), and w is an n-vector of observation weights, typically wi ≡ 1/n. The
matrix D is the discrete derivative operator that constrains the fitted function to lie in the
convex cone K(X). The vector s denotes weights that impose the integrability constraint
on the fitted density. As long as the grid is sufficiently fine in univariate settings elements
of s can be averages of the adjacent spacings between the ξi’s.

https://cran.r-project.org
https://cran.r-project.org
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Associated with the primal problem (P) is the dual problem,

(D) {−s⊤Ψ∗(−ϕ) | Sϕ = −w⊤L+D⊤η,ϕ ⩾ 0,D⊤η ⩾ 0} = max!

Here, η is anm-vector of dual variables and ϕ is anm-vector of function values representing
the density evaluated at the ξi’s, and S = diag(s). The vector Ψ∗ is the convex conjugate
of Ψ defined coordinate-wise with typical element ψ∗(y) = supx{yx−ψ(x)}. Problems (P)
and (D) are strongly dual in the sense of the following result, which may viewed as the
discrete counterpart of Theorem 2 of Koenker and Mizera (2010).

For Ψ(x) with typical element ψ(x) = e−x we have Ψ∗ with elements ψ∗(y) = −y log y+
y, so the dual problem corresponding to maximum likelihood can be interpreted as maxi-
mizing the Shannon entropy of the estimated density subject to the constraints appearing
in (D). Since g was interpreted in (P) as log f this result justifies our interpretation of
solutions of (D) as densities provided that they satisfy our integrability condition. This is
easily verified and thus justifies the implicit Lagrange multiplier of one on the integrability
constraint in (P). Then solutions ϕ of (D) satisfy s⊤ϕ = 1 and ϕ ⩾ 0. as shown in Propo-
sition 2 of Koenker and Mizera (2010). The crucial element of the proof of this proposition
is that the differencing operator D annihilates the constant vector and therefore the result
extends immediately to other norm-type penalties as well as to the other entropy objec-
tives that we have discussed. Indeed, since the second difference operator representing our
convexity constraint annihilates any affine function it follows by the same argument that
the mean of the estimated density also coincides with the sample mean of the observed
Xi’s.
For penalties with Rényi exponents less than one, the dual formulation takes ψ(y) = yα

except of course for α = 0 for which ψ(y) = log y. To implement the total variation
regularization rather than the concavity constraint, the L1 constraint on Dγ in the primal
becomes an L∞ constraint in the dual, so in the dual formulation we simply constrain
∥D⊤η∥∞ ⩽ λ, and similarly for total variation (L1 norm) constraints on higher order
derivatives.

Code to reproduce each of the figures appearing above is available from REBayes package
in the file medde.Rnw located in the vignettes directory. Readers are cautioned that al-
though all of the computational problems described above are strictly convex and therefore
possess unique solutions, extreme choices of the parameters can stress even the excellent
optimization software provided by Mosek. In Example 2 we have seen that attempts to
push the Rényi α parameter much below -1, cause difficulty. In Example 3 a choice of λ
somewhat larger than those reported here also causes trouble. Fortunately, it is relatively
easy to find values of these parameters that are within an empirically sensible range.

5. Conclusion

Density estimation by penalty methods is one of those [IJ] Good ideas of the 1970’s that
has matured rather slowly. Fortunately, recent developments in convex optimization have
greatly expanded the menu of possible penalties, and there are promising opportunities for
embedding these methods into more complex semi-parametric analyses.
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Many aspects remain to be explored. We have elementary Fisher consistency results
from Koenker and Mizera (2010) and some rate and limiting distributional results from
Han and Wellner (2016), and others, but there are many interesting theoretical questions.
It would be nice to know more about multivariate extensions. Little is known about choice
of the Rényi α, can it be estimated in a reasonable way? If only we could divert some
energy away from kernel methods, maybe some progress could be made in one or more of
these directions.
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