
Package: SparseM (via r-universe)
October 15, 2024

Version 1.84-2

Maintainer Roger Koenker <rkoenker@uiuc.edu>

Depends R (>= 2.15), methods

Imports graphics, stats, utils

VignetteBuilder knitr

Suggests knitr

Description Some basic linear algebra functionality for sparse
matrices is provided: including Cholesky decomposition and
backsolving as well as standard R subsetting and Kronecker
products.

License GPL (>= 2)

Title Sparse Linear Algebra

URL http://www.econ.uiuc.edu/~roger/research/sparse/sparse.html

NeedsCompilation yes

Author Roger Koenker [cre, aut], Pin Tian Ng [ctb] (Contributions to
Sparse QR code), Yousef Saad [ctb] (author of sparskit2), Ben
Shaby [ctb] (author of chol2csr), Martin Maechler [ctb] (chol()
tweaks; S4, <https://orcid.org/0000-0002-8685-9910>)

Date/Publication 2024-07-17 16:10:06 UTC

Repository https://rudjer.r-universe.dev

RemoteUrl https://github.com/cran/SparseM

RemoteRef HEAD

RemoteSha cc6d7dc14d44e6a087ec18d666818f166ccbd47f

Contents
character or NULL-class . 2
lsq . 3
matrix.coo-class . 4
matrix.csc-class . 5

1

http://www.econ.uiuc.edu/~roger/research/sparse/sparse.html
https://orcid.org/0000-0002-8685-9910

2 character or NULL-class

matrix.csc.hb-class . 6
matrix.csr-class . 7
matrix.csr.chol-class . 8
matrix.ssc-class . 10
matrix.ssc.hb-class . 11
matrix.ssr-class . 12
mslm-class . 13
numeric or NULL-class . 13
slm . 14
slm-class . 16
slm.fit . 16
slm.methods . 18
SparseM.hb . 20
SparseM.image . 22
SparseM.ontology . 23
SparseM.ops . 25
SparseM.solve . 27
summary.mslm-class . 30
summary.slm-class . 30
triogramX . 31

Index 32

character or NULL-class

Class "character or NULL"

Description

A virtual class needed by the "matrix.csc.hb" class

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "character or NULL" in the signature.

lsq 3

lsq Least Squares Problems in Surveying

Description

One of the four matrices from the least-squares solution of problems in surveying that were used by
Michael Saunders and Chris Paige in the testing of LSQR

Usage

data(lsq)

Format

A list of class matrix.csc.hb or matrix.ssc.hb depending on how the coefficient matrix is stored
with the following components:

ra ra component of the csc or ssc format of the coefficient matrix, X.

ja ja component of the csc or ssc format of the coefficient matrix, X.

ia ia component of the csc or ssc format of the coefficient matrix, X.

rhs.ra ra component of the right-hand-side, y, if stored in csc or ssc format; right-hand-side stored
in dense vector or matrix otherwise.

rhs.ja ja component of the right-hand-side, y, if stored in csc or ssc format; a null vector otherwise.

rhs.ia ia component of the right-hand-side, y, if stored in csc or ssc format; a null vector otherwise.

xexact vector of the exact solutions, b, if they exist; a null vector o therwise.

guess vector of the initial guess of the solutions if they exist; a null vector otherwise.

dim dimenson of the coefficient matrix, X.

rhs.dim dimenson of the right-hand-side, y.

rhs.mode storage mode of the right-hand-side; can be full storage or same format as the coefficient
matrix.

References

Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,
http://www.econ.uiuc.edu/~roger/research/home.html

Matrix Market, https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/lsq/lsq.html

See Also

read.matrix.hb

http://www.econ.uiuc.edu/~roger/research/home.html
https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/lsq/lsq.html

4 matrix.coo-class

Examples

data(lsq)
class(lsq) # -> [1] "matrix.csc.hb"
model.matrix(lsq)->X
class(X) # -> "matrix.csr"
dim(X) # -> [1] 1850 712
y <- model.response(lsq) # extract the rhs
length(y) # [1] 1850

matrix.coo-class Class "matrix.coo" – Sparse Matrices in [Coo]rdinate Format

Description

Class for sparse matrices stored in coordinate aka “triplet” format, storing for each non-zero entry
x[i,j] the triplet (i,j, x[i,j]), in slots (ia, ja, ra).

Objects from the Class

Objects can be created by calls of the form new("matrix.coo", ...), but typically rather by
as.matrix.coo().

Slots

ra: Object of class numeric, a real array of nnz elements containing the non-zero elements of A.

ja: Object of class integer, an integer array of nnz elements containing the column indices of the
elements stored in ‘ra’.

ia: Object of class integer, an integer array of nnz elements containing the row indices of the
elements stored in ‘ra’.

dimension: Object of class integer, dimension of the matrix

Methods

as.matrix.coo signature(x = "matrix.coo"): ...

as.matrix.csr signature(x = "matrix.coo"): ...

as.matrix signature(x = "matrix.coo"): ...

dim signature(x = "matrix.coo"): ...

See Also

matrix.csr-class

matrix.csc-class 5

Examples

try(new("matrix.coo")) # fails currently {FIXME!} # the 1x1 matrix [0]

correponds to base matrix()
mcoo <- new("matrix.coo", ra=NA_real_, ia = 1L, ja = 1L, dimension = c(1L, 1L))
mcoo # currently *does* print but wrongly: as.matrix.csr(<matrix.coo>) fails to keep NA !!
co2 <- new("matrix.coo", ra = c(-Inf, -2, 3, Inf),

ia = c(1L,1:3), ja = 2L*(1:4), dimension = c(7L, 12L))
co2 # works fine (as has no NA)

Sparse Diagonal (from "numeric"):
as(1:5, "matrix.diag.csr") # a sparse version of diag(1:5)

matrix.csc-class Class "matrix.csc" - Sparse Matrices in [C]ompressed [S]parse
[C]olumn Format

Description

A class for sparse matrices stored in compressed sparse column (’csc’) format.

Objects from the Class

Objects can be created by calls of the form new("matrix.csc", ...).

Slots

ra: Object of class numeric, a real array of nnz elements containing the non-zero elements of A,
stored in column order. Thus, if i<j, all elements of column i precede elements from column
j. The order of elements within the column is immaterial.

ja: Object of class integer, an integer array of nnz elements containing the row indices of the
elements stored in ‘ra’.

ia: Object of class integer, an integer array of n+1 elements containing pointers to the beginning
of each column in the arrays ‘ra’ and ‘ja’. Thus ‘ia[i]’ indicates the position in the arrays ‘ra’
and ‘ja’ where the ith column begins. The last, (n+1)st, element of ‘ia’ indicates where the
n+1 column would start, if it existed.

dimension: Object of class integer, dimension of the matrix

Methods

as.matrix.csr signature(x = "matrix.csc"): ...
as.matrix.ssc signature(x = "matrix.csc"): ...
as.matrix.ssr signature(x = "matrix.csc"): ...
as.matrix signature(x = "matrix.csc"): ...
chol signature(x = "matrix.csc"): ...
dim signature(x = "matrix.csc"): ...
t signature(x = "matrix.csc"): ...

6 matrix.csc.hb-class

See Also

matrix.csr-class

Examples

cscM <- as.matrix.csc(as(diag(4:1), "matrix.csr"))
cscM
str(cscM)
stopifnot(identical(dim(cscM), c(4L, 4L)))

matrix.csc.hb-class Class "matrix.csc.hb" - Column Compressed Sparse Matrices stored
in Harwell-Boeing Format

Description

A class consisting of the coefficient matrix and the right-hand-side of a linear system of equations,
initial guess of the solution and the exact solutions if they exist stored in external files using the
Harwell-Boeing format.

Objects from the Class

Objects can be created by calls of the form new("matrix.csc.hb", ...).

Slots

ra: Object of class numeric, ra component of the csc or ssc format of the coefficient matrix, X.

ja: Object of class integer, ja component of the csc or ssc format of the coefficient matrix, X.

ia: Object of class numeric, ia component of the csc or ssc format of the coefficient matrix, X.

rhs.ra: Object of class numeric, ra component of the right-hand-side, y, if stored in csc or ssc
format; right-hand-side stored in dense vector or matrix otherwise.

guess: Object of class numeric or NULL vector of the initial guess of the solutions if they exist; a
null vector otherwise.

xexact: Object of class numeric or NULL vector of the exact solutions, b, if they exist; a null vector
otherwise.

dimension: Object of class integer, dimenson of the coefficient matrix, X.

rhs.dim: Object of class integer, dimenson of the right-hand-side, y.

rhs.mode: Object of class character or NULL storage mode of the right-hand-side; can be full
storage or same format as the coefficient matrix.

Methods

model.matrix signature(object = "matrix.csc.hb"): ...

show signature(object = "matrix.csc.hb"): show() the object, notably also when auto-printing.

matrix.csr-class 7

See Also

model.matrix, model.response, read.matrix.hb, matrix.ssc.hb-class

matrix.csr-class Class "matrix.csr" - Sparse Matrices in Compressed Sparse Row For-
mat

Description

A class for sparse matrices stored in compressed sparse row (’csr’) format.

Objects from the Class

Objects can be created by calls of the form new("matrix.csr", ...) and coerced from various
other formats. Coercion of integer scalars and vectors into identity matrices and diagonal matrices
respectively is accomplished by as(x,"matrix.diag.csr") which generates an object that has all
the rights and responsibilties of the "matrix.csr" class.

The default "matrix.csr" object, i.e., new("matrix.csr"), is a scalar (1 by 1) matrix with ele-
ment 0.

Slots

ra: Object of class numeric, a real array of nnz elements containing the non-zero elements of A,
stored in row order. Thus, if i < j, all elements of row i precede elements from row j. The
order of elements within the rows is immaterial.

ja: Object of class integer, an integer array of nnz elements containing the column indices of the
elements stored in ra.

ia: A class integer array of n+1 elements containing pointers to the beginning of each row in the
arrays ra and ja. Thus ‘ia[i]’ indicates the position in the arrays ra and ja where the ith row
begins. The last, (n+1)st, element of ia indicates where the n+1 row would start, if it existed.

dimension: An integer, dimension of the matrix

Methods

%*% signature(x = "matrix.csr", y = "matrix.csr"): ...

%*% signature(x = "matrix.csr", y = "matrix"): ...

%*% signature(x = "matrix.csr", y = "numeric"): ...

%*% signature(x = "matrix", y = "matrix.csr"): ...

%*% signature(x = "numeric", y = "matrix.csr"): ...

as.matrix.csc signature(x = "matrix.csr"): ...

as.matrix.ssc signature(x = "matrix.csr"): ...

as.matrix.ssr signature(x = "matrix.csr"): ...

as.matrix.coo signature(x = "matrix.csr"): ...

8 matrix.csr.chol-class

as.matrix signature(x = "matrix.csr"): ...

chol signature(x = "matrix.csr"): ...

diag signature(x = "matrix.csr"): ...

diag<- signature(x = "matrix.csr"): ...

dim signature(x = "matrix.csr"): ...

image signature(x = "matrix.csr"): ...

solve signature(a = "matrix.csr"): ...

t signature(x = "matrix.csr"): ...

diff signature(x = "matrix.csr"): ...

diag<- signature(x = "matrix.diag.csr"): ...

See Also

matrix.csc-class

Examples

new("matrix.csr") # the 1x1 matrix [0]
new("matrix.diag.csr") # the 'same'

as(1:5, "matrix.diag.csr") # a sparse version of diag(1:5)

matrix.csr.chol-class Class "matrix.csr.chol" (Block Sparse Cholesky Decomposition)

Description

A class of objects returned from Ng and Peyton’s (1993) block sparse Cholesky algorithm.

Details

Note that the perm and notably invp maybe important to back permute rows and columns of the
decompositions, see the Examples, and our chol help page.

Objects from the Class

Objects may be created by calls of the form new("matrix.csr.chol", ...), but typically result
from chol(<matrix.csr>).

matrix.csr.chol-class 9

Slots

nrow: an integer, the number of rows of the original matrix, or in the linear system of equations.

nnzlindx: Object of class numeric, number of non-zero elements in lindx

nsuper: an integer, the number of supernodes of the decomposition

lindx: Object of class integer, vector of integer containing, in column major order, the row
subscripts of the non-zero entries in the Cholesky factor in a compressed storage format

xlindx: Object of class integer, vector of integer of pointers for lindx

nnzl: of class "numeric", an integer, the number of non-zero entries, including the diagonal en-
tries, of the Cholesky factor stored in lnz

lnz: a numeric vector of the entries of the Cholesky factor

xlnz: an integer vector, the column pointers for the Cholesky factor stored in lnz

invp: inverse permutation vector, integer

perm: permutation vector, integer

xsuper: Object of class integer, array containing the supernode partioning

det: numeric, the determinant of the Cholesky factor

log.det: numeric, the log determinant of the Cholesky factor

ierr: an integer, the error flag (from Fortran’s ‘src/chol.f’)

time: numeric, unused (always 0.) currently.

Methods

as.matrix.csr signature(x = "matrix.csr.chol",upper.tri=TRUE): to get the sparse ("matrix.csr")
upper triangular matrix corresponding to the Cholesky decomposition.

backsolve signature(r = "matrix.csr.chol"): for computing R−1b when the Cholesky de-
composition is A = R′R.

See Also

Base R’s chol and SparseM’s chol, notably for examples; backsolve

Examples

x5g <- new("matrix.csr",
ra = c(300, 130, 5, 130, 330,

125, 10, 5, 125, 200, 70,
10, 70, 121.5, 1e30),

ja = c(1:3, 1:4, 1:4, 2:5),
ia = c(1L, 4L, 8L, 12L, 15L, 16L),
dimension = c(5L, 5L))

(m5g <- as.matrix(x5g)) # yes, is symmetric, and positive definite:
eigen(m5g, only.values=TRUE)$values # all positive (but close to singular)
ch5g <- chol(x5g)
str(ch5g) # --> the slots of the "matrix.csr.chol" class
mch5g <- as.matrix.csr(ch5g)
print.table(as.matrix(mch5g), zero.print=".") # indeed upper triagonal w/ positive diagonal

10 matrix.ssc-class

x5 has even more extreme entry at [5,5]:
x5 <- x5g; x5[5,5] <- 2.9e32
m5 <- as.matrix(x5)
(c5 <- chol(m5))# still fine, w/ [5,5] entry = 1.7e16 and other diag.entries in (9.56, 17.32)
ch5 <- chol(x5) # --> warning "Replaced 3 tiny diagonal entries by 'Large'"

gave error for a while
(mmc5 <- as.matrix(as.matrix.csr(ch5)))

yes, these replacements were extreme, and the result is "strange'
Solve the problem (here) specifying non-default singularity-tuning par 'tiny':
ch5. <- chol(x5, tiny = 1e-33)
(mmc5. <- as.matrix(as.matrix.csr(ch5.))) # looks much better.
Indeed: R'R back-permuted *is* the original matrix x5, here m5:
(RtR <- crossprod(mmc5.)[ch5.@invp, ch5.@invp])

all.equal(m5, RtR, tolerance = 2^-52)
stopifnot(all.equal(m5, RtR, tolerance = 1e-14)) # on F38 Linux, only need tol = 1.25e-16

matrix.ssc-class Class "matrix.ssc" - Sparse Matrices in [S]ymmetric [S]parse
[C]olumn Format

Description

A class for sparse matrices stored in symmetric sparse column (’ssc’) format.

Objects from the Class

Objects can be created by calls of the form new("matrix.ssc", ...).

Slots

ra: Object of class numeric, a real array of nnz elements containing the non-zero elements of
the lower triangular part of A, stored in column order. Thus, if i<j, all elements of column i
precede elements from column j. The order of elements within the column is immaterial.

ja: Object of class integer, an integer array of nnz elements containing the row indices of the
elements stored in ‘ra’.

ia: Object of class integer, an integer array of n+1 elements containing pointers to the beginning
of each column in the arrays ‘ra’ and ‘ja’. Thus ‘ia[i]’ indicates the position in the arrays ‘ra’
and ‘ja’ where the ith column begins. The last, (n+1)st, element of ‘ia’ indicates where the
n+1 column would start, if it existed.

dimension: Object of class integer, dimension of the matrix

Methods

as.matrix.csc signature(x = "matrix.ssc"): ...
as.matrix.csr signature(x = "matrix.ssc"): ...
as.matrix.ssr signature(x = "matrix.ssc"): ...
as.matrix signature(x = "matrix.ssc"): ...
dim signature(x = "matrix.ssc"): ...

matrix.ssc.hb-class 11

See Also

matrix.csr-class

matrix.ssc.hb-class Class "matrix.ssc.hb"

Description

A new class consists of the coefficient matrix and the right-hand-side of a linear system of equations,
initial guess of the solution and the exact solutions if they exist stored in external files using the
Harwell-Boeing format.

Objects from the Class

Objects can be created by calls of the form new("matrix.ssc.hb", ...).

Slots

ra: Object of class numeric, ra component of the csc or ssc format of the coefficient matrix, X.

ja: Object of class integer, ja component of the csc or s sc format of the coefficient matrix, X.

ia: Object of class integer, ia component of the csc or ssc format of the coefficient matrix, X.

rhs.ra: Object of class numeric, ra component of the right-hand-side, y, if stored in csc or ssc
format; right-hand-side stored in dense vector or matrix otherwise.

guess: Object of class numeric or NULL vector of the initial guess of the solutions if they exist; a
null vector otherwise.

xexact: Object of class numeric or NULL vector of the exact solutions, b, if they exist; a null vector
otherwise.

dimension: Object of class integer, dimenson of the coefficient matrix, X.

rhs.dim: Object of class integer, dimenson of the right-hand-side, y.

rhs.mode: Object of class character or NULL storage mode of the right-hand-side; can be full
storage or same format as the coefficient matrix.

Extends

Class "matrix.csc.hb", directly.

Methods

model.matrix signature(object = "matrix.ssc.hb"): ...

See Also

model.matrix, model.response, read.matrix.hb, matrix.csc.hb-class

12 matrix.ssr-class

matrix.ssr-class Class "matrix.ssr" - Sparse Matrices in [S]ymmetric [S]parse [R]ow
Format

Description

A class for sparse matrices stored in symmetric sparse row (’ssr’) format.

Objects from the Class

Objects can be created by calls of the form new("matrix.ssr", ...).

Slots

ra: Object of class numeric, a real array of nnz elements containing the non-zero elements of the
lower triangular part of A, stored in row order. Thus, if i<j, all elements of row i precede
elements from row j. The order of elements within the rows is immaterial.

ja: Object of class integer, an integer array of nnz elements containing the column indices of the
elements stored in ‘ra’.

ia: Object of class integer, an integer array of n+1 elements containing pointers to the beginning
of each row in the arrays ‘ra’ and ‘ja’. Thus ‘ia[i]’ indicates the position in the arrays ‘ra’ and
‘ja’ where the ith row begins. The last, (n+1)st, element of ‘ia’ indicates where the n+1 row
would start, if it existed.

dimension: Object of class integer, dimension of the matrix

Methods

as.matrix.csc signature(x = "matrix.ssr"): ...

as.matrix.csr signature(x = "matrix.ssr"): ...

as.matrix.ssr signature(x = "matrix.ssr"): ...

as.matrix signature(x = "matrix.ssr"): ...

dim signature(x = "matrix.ssr"): ...

See Also

matrix.csr-class

Examples

ssr <- as.matrix.ssr(diag(c(2,3,5,7)))
ssr

mslm-class 13

mslm-class Class "mslm"

Description

A sparse extension of lm

Objects from the Class

Objects can be created by calls of the form new("mslm", ...).

Slots

coefficients: Object of class numeric estimated coefficients
chol: Object of class matrix.csr.chol generated by the function chol

residuals: Object of class "numeric" residuals
fitted: Object of class "numeric" fitted values

Extends

Class "lm", directly. Class "slm", directly. Class "oldClass", by class "lm".

Methods

coef signature(object = "mslm"): ...
fitted signature(object = "mslm"): ...
residuals signature(object = "mslm"): ...
summary signature(object = "mslm"): ...

See Also

slm

numeric or NULL-class Class "numeric or NULL"

Description

A virtual class needed by the "matrix.csc.hb" class

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "numeric or NULL" in the signature.

14 slm

slm Fit a linear regression model using sparse matrix algebra

Description

This is a function to illustrate the use of sparse linear algebra to solve a linear least squares problem
using Cholesky decomposition. The syntax and output attempt to emulate lm() but may fail to do
so fully satisfactorily. Ideally, this would eventually become a method for lm. The main obstacle
to this step is that it would be necessary to have a model.matrix function that returned an object in
sparse csr form. For the present, the objects represented in the formula must be in dense form. If
the user wishes to specify fitting with a design matrix that is already in sparse form, then the lower
level function slm.fit() should be used.

Usage

slm(formula, data, weights, na.action, method = "csr", contrasts = NULL, ...)

Arguments

formula a formula object, with the response on the left of a ~ operator, and the terms,
separated by + operators, on the right. As in lm(), the response variable in the
formula can be matrix valued.

data a data.frame in which to interpret the variables named in the formula, or in the
subset and the weights argument. If this is missing, then the variables in the
formula should be on the search list. This may also be a single number to handle
some special cases – see below for details.

weights vector of observation weights; if supplied, the algorithm fits to minimize the sum
of the weights multiplied into the absolute residuals. The length of weights must
be the same as the number of observations. The weights must be nonnegative
and it is strongly recommended that they be strictly positive, since zero weights
are ambiguous.

na.action a function to filter missing data. This is applied to the model.frame after any
subset argument has been used. The default (with na.fail) is to create an error
if any missing values are found. A possible alternative is na.omit, which deletes
observations that contain one or more missing values.

method there is only one method based on Cholesky factorization

contrasts a list giving contrasts for some or all of the factors default = NULL appearing in
the model formula. The elements of the list should have the same name as the
variable and should be either a contrast matrix (specifically, any full-rank matrix
with as many rows as there are levels in the factor), or else a function to compute
such a matrix given the number of levels.

... additional arguments for the fitting routines

slm 15

Value

A list of class slm consisting of:

coefficients estimated coefficients

chol cholesky object from fitting

residuals residuals

fitted fitted values

terms terms

call call

...

Author(s)

Roger Koenker

References

Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,
http://www.econ.uiuc.edu/~roger/research/home.html

See Also

slm.methods for methods summary, print, fitted, residuals and coef associated with class
slm, and slm.fit for lower level fitting functions. The latter functions are of special interest if you
would like to pass a sparse form of the design matrix directly to the fitting process.

Examples

data(lsq)
X <- model.matrix(lsq) #extract the design matrix
y <- model.response(lsq) # extract the rhs
X1 <- as.matrix(X)
slm.time <- system.time(slm(y~X1-1) -> slm.o) # pretty fast
lm.time <- system.time(lm(y~X1-1) -> lm.o) # very slow
cat("slm time =",slm.time,"\n")
cat("slm Results: Reported Coefficients Truncated to 5 ","\n")
sum.slm <- summary(slm.o)
sum.slm$coef <- sum.slm$coef[1:5,]
sum.slm
cat("lm time =",lm.time,"\n")
cat("lm Results: Reported Coefficients Truncated to 5 ","\n")
sum.lm <- summary(lm.o)
sum.lm$coef <- sum.lm$coef[1:5,]
sum.lm

http://www.econ.uiuc.edu/~roger/research/home.html

16 slm.fit

slm-class Class "slm"

Description

A sparse extension of lm

Objects from the Class

Objects can be created by calls of the form new("slm", ...).

Slots

coefficients: Object of class numeric estimated coefficients

chol: Object of class matrix.csr.chol generated by function chol

residuals: Object of class "numeric" residuals

fitted: Object of class "numeric" fitted values

Extends

Class "lm", directly. Class "oldClass", by class "lm".

Methods

coef signature(object = "slm"): ...

fitted signature(object = "slm"): ...

residuals signature(object = "slm"): ...

summary signature(object = "slm"): ...

See Also

slm

slm.fit Internal slm fitting functions

Description

Fitting functions for sparse linear model fitting.

Usage

slm.fit(x,y,method, ...)
slm.wfit(x,y,weights,...)
slm.fit.csr(x, y, ...)

slm.fit 17

Arguments

x design matrix.

y vector of response observations.

method only csr is supported currently

weights an optional vector of weights to be used in the fitting process. If specified,
weighted least squares is used with weights ‘weights’ (that is, minimizing∑

wi ∗ e2i

The length of weights must be the same as the number of observations. The
weights must be nonnegative and it is strongly recommended that they be strictly
positive, since zero weights are ambiguous.

... additional arguments.

Details

slm.fit and slm.wfit call slm.fit.csr to do Cholesky decomposition and then backsolve to
obtain the least squares estimated coefficients. These functions can be called directly if the user
is willing to specify the design matrix in matrix.csr form. This is often advantageous in large
problems to reduce memory requirements.

Value

A list of class slm consisting of:

coef estimated coefficients

chol cholesky object from fitting

residuals residuals

fitted fitted values

df.residual degrees of freedom

terms terms

call call

...

Author(s)

Roger Koenker

References

Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,
http://www.econ.uiuc.edu/~roger/research/home.html

See Also

slm

http://www.econ.uiuc.edu/~roger/research/home.html

18 slm.methods

Examples

data(lsq)
X <- model.matrix(lsq) #extract the design matrix
y <- model.response(lsq) # extract the rhs
class(X) # -> "matrix.csr"
class(y) # -> NULL
slm.fit(X,y)->slm.fit.o # this is much more efficient in memory usage than slm()
slm(y~as.matrix(X)-1) -> slm.o # this requires X to be transformed into dense mode
cat("Difference between `slm.fit' and `slm' estimated coefficients =",
sum(abs(slm.fit.o$coef-slm.o$coef)),"\n")

slm.methods Methods for slm objects

Description

Summarize, print, and extract objects from slm objects.

Usage

S3 method for class 'slm'
summary(object, correlation, ...)
S3 method for class 'mslm'
summary(object, ...)
S3 method for class 'slm'
print(x, digits, ...)
S3 method for class 'summary.slm'
print(x, digits, symbolic.cor, signif.stars, ...)
S3 method for class 'slm'
fitted(object, ...)
S3 method for class 'slm'
residuals(object, ...)
S3 method for class 'slm'
coef(object, ...)
S3 method for class 'slm'
extractAIC(fit, scale = 0, k = 2, ...)
S3 method for class 'slm'
deviance(object, ...)

Arguments

object, x, fit object of class slm.

digits minimum number of significant digits to be used for most numbers.

scale optional numeric specifying the scale parameter of the model, see ’scale’ in
’step’. Currently only used in the ’"lm"’ method, where ’scale’ specifies the
estimate of the error variance, and ’scale = 0’ indicates that it is to be estimated
by maximum likelihood.

slm.methods 19

k numeric specifying the "weight" of the equivalent degrees of freedom (’edf’)
part in the AIC formula.

symbolic.cor logical; if TRUE, the correlation of coefficients will be printed. The default is
FALSE

signif.stars logical; if TRUE, P-values are additionally encoded visually as “significance
stars” in order to help scanning of long coefficient tables. It defaults to the
‘show.signif.stars’ slot of ‘options’.

correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned
and printed.

... additional arguments passed to methods.

Value

print.slm and print.summary.slm return invisibly. fitted.slm, residuals.slm, and coef.slm
return the corresponding components of the slm object. extractAIC.slm and deviance.slm return
the AIC and deviance values of the fitted object.

Author(s)

Roger Koenker

References

Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,
http://www.econ.uiuc.edu/~roger/research/home.html

See Also

slm

Examples

data(lsq)
X <- model.matrix(lsq) #extract the design matrix
y <- model.response(lsq) # extract the rhs
X1 <- as.matrix(X)
slm.time <- system.time(slm(y~X1-1) -> slm.o) # pretty fast
cat("slm time =",slm.time,"\n")
cat("slm Results: Reported Coefficients Truncated to 5 ","\n")
sum.slm <- summary(slm.o)
sum.slm$coef <- sum.slm$coef[1:5,]
sum.slm
fitted(slm.o)[1:10]
residuals(slm.o)[1:10]
coef(slm.o)[1:10]

http://www.econ.uiuc.edu/~roger/research/home.html

20 SparseM.hb

SparseM.hb Harwell-Boeing Format Sparse Matrices

Description

Read, and extract components of data in Harwell-Boeing sparse matrix format.

Usage

read.matrix.hb(file)
model.matrix(object, ...)
model.response(data,type)

Arguments

file file name to read from or

data, object an object of either ’matrix.csc.hb’ or ’matrix.ssc.hb’ class

type One of ‘"any"’, ‘"numeric"’, ‘"double"’. Using the either of latter two coerces
the result to have storage mode ‘"double"’

... additional arguments to model.matrix

Details

Sparse coefficient matrices in the Harwell-Boeing format are stored in 80-column records. Each
file begins with a multiple line header block followed by two, three or four data blocks. The
header block contains summary information on the storage formats and storage requirements. The
data blocks contain information of the sparse coefficient matrix and data for the right-hand-side of
the linear system of equations, initial guess of the solution and the exact solutions if they exist.
The function model.matrix extracts the X matrix component. The function model.response ex-
tracts the y vector (or matrix). The function model.guess extracts the guess vector. The function
model.xexact extracts the xexact vector. This function is written in R replacing a prior implemen-
tation based on iohb.c which had memory fault difficulties. The function write.matrix.hb has been
purged; users wishing to write matrices in Harwell-Boeing format are advised to convert SparseM
matrices to Matrix classes and use writeHB from the Matrix package. Contributions of code to
facilitate this conversion would be appreciated!

Value

The function read.matrix.hb returns a list of class matrix.csc.hb or matrix.ssc.hb depending
on how the coefficient matrix is stored in the file.

ra ra component of the csc or ssc format of the coefficient matrix, X.

ja ja component of the csc or ssc format of the coefficient matrix, X.

ia ia component of the csc or ssc format of the coefficient matrix, X.

rhs.ra ra component of the right-hand-side, y, if stored in csc or ssc format; right-hand-
side stored in dense vector or matrix otherwise.

SparseM.hb 21

rhs.ja ja component of the right-hand-side, y, if stored in csc or ssc format; a null
vector otherwise.

rhs.ia ia component of the right-hand-side, y, if stored in csc or ssc format; a null
vector otherwise.

xexact vector of the exact solutions, b, if they exist; a null vector otherwise.

guess vector of the initial guess of the solutions if they exist; a null vector otherwise.

dimension dimenson of the coefficient matrix, X.

rhs.dim dimenson of the right-hand-side, y.

rhs.mode storage mode of the right-hand-side; can be full storage or same format as the
coefficient matrix, for the moment the only allowed mode is "F" for full, or
dense mode.

The function model.matrix returns the X matrix of class matrix.csr. The function model.response
returns the y vector (or matrix). The function model.guess returns the guess vector (or matrix).
The function model.xexact returns the xexact vector (or matrix).

Author(s)

Pin Ng

References

Duff, I.S., Grimes, R.G. and Lewis, J.G. (1992) User’s Guide for Harwell-Boeing Sparse Matrix
Collection at https://math.nist.gov/MatrixMarket/collections/hb.html

See Also

slm for sparse version of lm
SparseM.ops for operators on class matrix.csr
SparseM.solve for linear equation solving for class matrix.csr
SparseM.image for image plotting of class matrix.csr
SparseM.ontology for coercion of class matrix.csr

Examples

Xy <- read.matrix.hb(system.file("extdata","lsq.rra",package = "SparseM"))
class(Xy) # -> [1] "matrix.csc.hb"
X <- model.matrix(Xy)->X
class(X) # -> "matrix.csr"
dim(X) # -> [1] 1850 712
y <- model.response(Xy) # extract the rhs
length(y) # [1] 1850
Xy <- read.matrix.hb(system.file("extdata","rua_32_ax.rua",package = "SparseM"))
X <- model.matrix(Xy)
y <- model.response(Xy) # extract the rhs
g <- model.guess(Xy) # extract the guess
a <- model.xexact(Xy) # extract the xexact
fit <- solve(t(X) %*% X, t(X) %*% y) # compare solution with xexact solution

https://math.nist.gov/MatrixMarket/collections/hb.html

22 SparseM.image

SparseM.image Image Plot for Sparse Matrices

Description

Display the pattern of non-zero entries of a matrix of class matrix.csr.

Usage

S4 method for signature 'matrix.csr'
image(x, col=c("white","gray"),

xlab="column", ylab="row", ...)

Arguments

x a matrix of class matrix.csr.

col a list of colors such as that generated by rainbow. Defaults to c("white","gray")

xlab, ylab each a character string giving the labels for the x and y axis.

... additional arguments.

Details

The pattern of the non-zero entries of a sparse matrix is displayed. By default nonzero entries of
the matrix appear as gray blocks and zero entries as white background.

References

Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,
http://www.econ.uiuc.edu/~roger/research/home.html

See Also

SparseM.ops, SparseM.solve, SparseM.ontology

Examples

a <- rnorm(20*5)
A <- matrix(a,20,5)
A[row(A)>col(A)+4|row(A)<col(A)+3] <- 0
b <- rnorm(20*5)
B <- matrix(b,20,5)
B[row(A)>col(A)+2|row(A)<col(A)+2] <- 0
image(as.matrix.csr(A)%*%as.matrix.csr(t(B)))

http://www.econ.uiuc.edu/~roger/research/home.html

SparseM.ontology 23

SparseM.ontology Sparse Matrix Class Ontology

Description

This group of functions evaluates and coerces changes in class structure.

Usage

as.matrix.csr(x, nrow, ncol, eps = .Machine$double.eps, ...)
S4 method for signature 'matrix.csr.chol'
as.matrix.csr(x, nrow, ncol, eps, upper.tri=TRUE, ...)
S4 method for signature 'matrix.csr'
as.matrix.csc(x, nrow = 1, ncol = 1, eps = .Machine$double.eps)
S4 method for signature 'matrix.coo'
as.matrix.ssr(x, nrow = 1, ncol = 1, eps = .Machine$double.eps)
S4 method for signature 'matrix.csc'
as.matrix.ssc(x, nrow = 1, ncol = 1, eps = .Machine$double.eps)
S4 method for signature 'matrix.csr'
as.matrix.coo(x, nrow = 1, ncol = 1, eps = .Machine$double.eps)

is.matrix.csr(x)
is.matrix.csc(x)
is.matrix.ssr(x)
is.matrix.ssc(x)
is.matrix.coo(x)

Arguments

x is a matrix, or vector object, of either dense or sparse form

nrow number of rows of matrix

ncol number of columns of matrix

eps A tolerance parameter: elements of x such that abs(x) < eps set to zero. This
argument is only relevant when coercing matrices from dense to sparse form.
Defaults to eps = .Machine$double.eps

upper.tri logical, to choose upper or lower triangular matrix result.

... other arguments

Details

The function matrix.csc acts like matrix to coerce a vector object to a sparse matrix object of
class matrix.csr. This aspect of the code is in the process of conversion from S3 to S4 classes.
For the most part the S3 syntax prevails. An exception is the code to coerce vectors to diagonal
matrix form which uses as(v,"matrix.diag.csr". The generic functions as.matrix.xxx coerce
a matrix x into a matrix of storage class matrix.xxx. The argument matrix x may be of conventional
dense form, or of any of the four supported classes: matrix.csr, matrix.csc, matrix.ssr,

24 SparseM.ontology

matrix.ssc. The generic functions is.matrix.xxx evaluate whether the argument is of class
matrix.xxx. The function as.matrix transforms a matrix of any sparse class into conventional
dense form. The primary storage class for sparse matrices is the compressed sparse row matrix.csr
class. An n by m matrix A with real elements aij , stored in matrix.csr format consists of three
arrays:

• ra: a real array of nnz elements containing the non-zero elements of A, stored in row order.
Thus, if i<j, all elements of row i precede elements from row j. The order of elements within
the rows is immaterial.

• ja: an integer array of nnz elements containing the column indices of the elements stored in
ra.

• ia: an integer array of n+1 elements containing pointers to the beginning of each row in the
arrays ra and ja. Thus ia[i] indicates the position in the arrays ra and ja where the ith row
begins. The last, (n+1)st, element of ia indicates where the n+1 row would start, if it existed.

The compressed sparse column class matrix.csc is defined in an analogous way, as are the matrix.ssr,
symmetric sparse row, and matrix.ssc, symmetric sparse column classes.

Note

as.matrix.ssr and as.matrix.ssc should ONLY be used with symmetric matrices.

as.matrix.csr(x), when x is an object of class matrix.csr.chol (that is, an object returned by
a call to chol(a) when a is an object of class matrix.csr or matric.csc), by default returns an
upper triangular matrix, which is not consistent with the result of chol in the base package. To
get an lower triangular matric.csr matrix, use either as.matrix.csr(x, upper.tri = FALSE) or
t(as.matrix.csr(x)).

References

Koenker, R and Ng, P. (2002) SparseM: A Sparse Matrix Package for R. http://www.econ.uiuc.
edu/~roger/research/home.html

See Also

SparseM.hb for handling Harwell-Boeing sparse matrices.

Examples

t(m5 <- as.matrix.csr(c(-1:1,0,0)))
t(M4 <- as.matrix.csc(c(0:2,0), 4))
(S3 <- as.matrix.ssr(diag(x = 0:2))) # *symmetric*

stopifnot(identical(dim(m5), c(5L, 1L)),
identical(dim(M4), c(4L, 1L)),
identical(dim(S3), c(3L, 3L)))

n1 <- 10
p <- 5
a <- round(rnorm(n1*p), 2)
a[abs(a) < 0.7] <- 0
A <- matrix(a,n1,p)

http://www.econ.uiuc.edu/~roger/research/home.html
http://www.econ.uiuc.edu/~roger/research/home.html

SparseM.ops 25

B <- t(A) %*% A
A.csr <- as.matrix.csr(A)
A.csc <- as.matrix.csc(A)
B.ssr <- as.matrix.ssr(B)
B.ssc <- as.matrix.ssc(B)
stopifnot(exprs = {

is.matrix.csr(A.csr) # -> TRUE
is.matrix.csc(A.csc) # -> TRUE
is.matrix.ssr(B.ssr) # -> TRUE
is.matrix.ssc(B.ssc) # -> TRUE

})
as.matrix(A.csr)
as.matrix(A.csc)
as.matrix(B.ssr)
as.matrix(B.ssc)
as.matrix.csr(0, 2,3) # sparse matrix of all zeros
Diagonal (sparse) :
as(4, "matrix.diag.csr") # identity matrix of dimension 4
as(2:0, "matrix.diag.csr") # diagonal 3x3 matrix

SparseM.ops Basic Linear Algebra for Sparse Matrices

Description

Basic linear algebra operations for sparse matrices, mostly of class matrix.csr.

Arguments

x matrix of class matrix.csr.

y matrix of class matrix.csr or a dense matrix or vector.

value replacement values.

i, j vectors of elements to extract or replace.

nrow optional number of rows for the result.

lag an integer indicating which lag to use.

differences an integer indicating the order of the difference.

Details

Linear algebra operations for matrices of class matrix.csr are designed to behave exactly as for
regular matrices. In particular, matrix multiplication, kronecker product, addition, subtraction and
various logical operations should work as with the conventional dense form of matrix storage, as
does indexing, rbind, cbind, and diagonal assignment and extraction. The method diag may be used
to extract the diagonal of a matrix.csr object, to create a sparse diagonal see SparseM.ontology.

The function determinant computes the (log) determinant, of the argument, returning a "det" ob-
ject as the base function. This is typically preferred over using the function det() which is a simple

26 SparseM.ops

wrapper for determinant(), in a way it will work for our sparse matrices, as well. determinant()
computes the determinant of the argument matrix. If the matrix is of class matrix.csr then it must
be symmetric, or an error will be returned. If the matrix is of class matrix.csr.chol then the
(pre-computed) determinant of the Cholesky factor is returned, i.e., the product of the diagonal
elements.

The function norm, i.e. norm(x, type), by default computes the “sup” (or "M"aximum norm, i.e.,
the maximum of the matrix elements. Optionally, this type = "sup" (equivalently, type = "M")
norm can be replaced by the Hilbert-Schmidt, type = "HS" or equivalently, type = "F" norm, or the
type = "l1", norm. Note that for historical reasons, the default type differs from R’s own norm(),
see the examples using B, below. The "sup" === "M" and "HS" === "F" equivalences have been
introduced in SparseM version 1.84.

References

Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,
http://www.econ.uiuc.edu/~roger/research/home.html

See Also

slm for sparse linear model fitting. SparseM.ontology for coercion and other class relations in-
volving our sparse matrix classes.

Examples

n1 <- 10
n2 <- 10
p <- 6
y <- rnorm(n1)
a <- round(rnorm(n1*p), 2)
a[abs(a) < 0.5] <- 0
A <- matrix(a, n1,p)
A.csr <- as.matrix.csr(A)

B <- matrix(c(1.5, 0, 0, 0, -1.4, 0, 0, 0, 0, -1.4,
2, 0, -1, 0, 0, 2.1, -1.9, 1.4, 0, 0,
0,-2.3, 0, 0, -1.9, 0, 0, 0, 0, -1.4,
0, 0, 0, 0, 0, -3, 0, 1.3, 0, 1.1,
0, 0, 0, 0, 2, 0, 0, 0, -1, 0,
0, 0, -1.6,0, 0, 0, 0, 0, -1.7,0),

10L, 6L)
rcond(B) # 0.21 .. i.e., quite well conditioned
B.csr <- as.matrix.csr(B)
B.csr

norm() : different 'type' for base R and SparseM:
(nR <- vapply(c("1", "I", "F", "M", "2"), norm, 0, x = B))
1 I F M 2
8.400000 5.300000 7.372923 3.000000 4.464801
(nSpM <- vapply(c("sup","M", "HS","F", "l1"), norm, 0, x = B.csr))
sup M HS F l1
3.000000 3.000000 7.372923 7.372923 30.000000

http://www.econ.uiuc.edu/~roger/research/home.html

SparseM.solve 27

stopifnot(all.equal(unname(nSpM[c("M", "F")]),
unname(nR [c("M", "F")]), tolerance = 1e-14))

matrix transposition and multiplication
BtB <- crossprod(B) # == t(B) %*% B {more efficiently}

A.csr %*% t(B.csr)
BtBs <- t(B.csr) %*% B.csr
BtBs
stopifnot(all.equal(BtB, as.matrix(BtBs), tolerance = 1e-14),

all.equal(det(BtB), print(det(BtBs)), tolerance = 1e-14))

matrix o vector
stopifnot(all.equal(y %*% A , y %*% A.csr) ,

all.equal(A %*% 1:6, A.csr %*% 1:6)
)

kronecker product - via kronecker() methods:
A.csr %x% matrix(1:4,2,2)

SparseM.solve Linear Equation Solving via Cholesky Decomposition for Sparse Ma-
trices

Description

chol() performs a Cholesky decomposition of a symmetric positive definite sparse matrix x of
class matrix.csr.

backsolve() performs a triangular back-fitting to compute the solutions of a system of linear
equations in one step.

backsolve() and forwardsolve() can also split the functionality of backsolve into two steps.

solve() combines chol() and backsolve() to compute the inverse of a matrix if the right-hand-
side is missing.

Usage

chol(x, ...)
S4 method for signature 'matrix.csr'
chol(x, pivot = FALSE,

nsubmax, nnzlmax, tmpmax,
eps = .Machine$double.eps, tiny = 1e-30, Large = 1e128, warnOnly = FALSE,
cacheKb = 1024L, level = 8L, ...)

S4 method for signature 'matrix.csr.chol'
backsolve(r, x, k, upper.tri, transpose,

twice = TRUE, drop = TRUE, ...)
S4 method for signature 'matrix.csr.chol'
forwardsolve(l, x, k, upper.tri, transpose)

28 SparseM.solve

S4 method for signature 'matrix.csr'
solve(a, b, ...)

Arguments

a symmetric positive definite matrix of class "matrix.csr".

r, l object of class "matrix.csr.chol" as returned by the chol() method.

x For chol(): One of the sparse matrix classes, "matrix.csr" or "matrix.csc";
For {back,forward,}solve(): vector or regular matrix of right-hand-side(s)

of a system of linear equations.

b vector or matrix right-hand-side(s) to solve for.

k inherited from the generic; not used here.

pivot inherited from the generic; not used here.
nsubmax, nnzlmax, tmpmax

positive integer numbers with smart defaults; do not set unless you know what
you are doing!

eps positive tolerance for checking symmetry; change with caution.

tiny positive tolerance for checking diagonal entries to be “essentially zero” and
hence to be replaced by Large, during Cholesky decomposition. Chaning this
value may help in close to singular cases, see ‘Examples’.

Large large positive number, “essentially infinite”, to replace tiny diagonal entries dur-
ing Cholesky.

warnOnly logical; when set to true, a result is returned with a warning instead of an error
(via stop()); notably in close to singular cases.

cacheKb a positive integer, specifying an approximate size of the machine’s cache mem-
ory in kilo (1024) bytes (‘Kb’); used to be hard wired to 64.

level level of loop unrolling while performing numerical factorization; an integer in
c(1, 2, 4, 8); used to be hard wired to 8.

upper.tri, transpose
inherited from the generic; not used here.

twice logical flag: If true, backsolve() solves twice, see below.

drop logical flag: If true, backsolve() returns drop(.), i.e., a vector instead of a
column-1 matrix.

... further arguments passed to or from other methods.

Details

chol performs a Cholesky decomposition of a symmetric positive definite sparse matrix a of class
matrix.csr using the block sparse Cholesky algorithm of Ng and Peyton (1993). The structure of
the resulting matrix.csr.chol object is relatively complicated. If necessary it can be coerced back
to a matrix.csr object as usual with as.matrix.csr. backsolve does triangular back-fitting to
compute the solutions of a system of linear equations. For systems of linear equations that only vary
on the right-hand-side, the result from chol can be reused. Contrary to the behavior of backsolve in
base R, the default behavior of backsolve(C,b) when C is a matrix.csr.chol object is to produce

SparseM.solve 29

a solution to the system Ax = b where C <- chol(A), see the example section. When the flag twice
is FALSE then backsolve solves the system Cx = b, up to a permutation – see the comments below.
The command solve combines chol and backsolve, and will compute the inverse of a matrix if the
right-hand-side is missing. The determinant of the Cholesky factor is returned providing a means
to efficiently compute the determinant of sparse positive definite symmetric matrices.

There are several integer storage parameters that are set by default in the call to the Cholesky
factorization, these can be overridden in any of the above functions and will be passed by the usual
"dots" mechanism. The necessity to do this is usually apparent from error messages like: Error
in local(X...) increase tmpmax. For example, one can use, solve(A,b, tmpmax = 100*nrow(A)).
The current default for tmpmax is 50*nrow(A). Some experimentation may be needed to select
appropriate values, since they are highly problem dependent. See the code of chol() for further
details on the current defaults.

Note

There is no explicit checking for positive definiteness of the matrix so users are advised to ensure
that this condition is satisfied. Messages such as "insufficient space" may indicate that one is trying
to factor a singular matrix. Because the sparse Cholesky algorithm re-orders the positive definite
sparse matrix A, the value of x <- backsolve(C, b) does not equal the solution to the triangular
system Cx = b, but is instead the solution to the system CPx = Pb for some permutation ma-
trix P (and analogously for x <- forwardsolve(C, b)). However, a little algebra easily shows
that backsolve(C, forwardsolve(C, b), twice = FALSE) is the solution to the equation Ax = b.
Finally, if C <- chol(A) for some sparse covariance matrix A, and z is a conformable standard nor-
mal vector, then the product y <- as.matrix.csr(C) %*% z is normal with covariance matrix A
irrespective of the permutation of the Cholesky factor.

References

Koenker, R and Ng, P. (2002) SparseM: A Sparse Matrix Package for R. http://www.econ.uiuc.
edu/~roger/research/home.html

Ng, E. G. and B. W. Peyton (1993) Block sparse Cholesky algorithms on advanced uniprocessor
computers. SIAM J. Scientific Computing 14, 1034–1056.

See Also

slm() for a sparse version of stats package’s lm().

Examples

data(lsq)
class(lsq) # -> [1] "matrix.csc.hb"
model.matrix(lsq)->design.o
class(design.o) # -> "matrix.csr"
dim(design.o) # -> [1] 1850 712
y <- model.response(lsq) # extract the rhs
length(y) # [1] 1850

X <- as.matrix(design.o)
c(object.size(X) / object.size(design.o)) ## X is 92.7 times larger

http://www.econ.uiuc.edu/~roger/research/home.html
http://www.econ.uiuc.edu/~roger/research/home.html

30 summary.slm-class

t(design.o) %*% design.o -> XpX
t(design.o) %*% y -> Xpy
chol(XpX) -> chol.o

determinant(chol.o)

b1 <- backsolve(chol.o,Xpy) # least squares solutions in two steps
b2 <- solve(XpX,Xpy) # least squares estimates in one step
b3 <- backsolve(chol.o, forwardsolve(chol.o, Xpy),

twice = FALSE) # in three steps
checking that these three are indeed equal :
stopifnot(all.equal(b1, b2), all.equal(b2, b3))

summary.mslm-class Class "summary.mslm"

Description

Sparse version of summary.lm

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

print signature(x = "summary.mslm"): ...

summary.slm-class Class "summary.slm"

Description

Sparse version of summary.lm

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

print signature(x = "summary.slm"): ...

triogramX 31

triogramX A Design Matrix for a Triogram Problem

Description

This is a design matrix arising from a bivariate smoothing problem using penalized triogram fitting.
It is used in the SparseM vignette to illustrate the use of the sparse matrix image function.

Usage

data(triogramX)

Format

A 375 by 100 matrix stored in compressed sparse row format

References

Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,
http://www.econ.uiuc.edu/~roger/research/home.html

http://www.econ.uiuc.edu/~roger/research/home.html

Index

!=,matrix.csr-method (SparseM.ops), 25
∗ IO

SparseM.hb, 20
∗ algebra

SparseM.image, 22
SparseM.ontology, 23
SparseM.ops, 25
SparseM.solve, 27

∗ classes
character or NULL-class, 2
matrix.coo-class, 4
matrix.csc-class, 5
matrix.csc.hb-class, 6
matrix.csr-class, 7
matrix.csr.chol-class, 8
matrix.ssc-class, 10
matrix.ssc.hb-class, 11
matrix.ssr-class, 12
mslm-class, 13
numeric or NULL-class, 13
slm-class, 16
summary.mslm-class, 30
summary.slm-class, 30

∗ datasets
lsq, 3
triogramX, 31

∗ hplot
SparseM.image, 22

∗ regression
slm, 14
slm.fit, 16
slm.methods, 18

*,matrix.csr-method (SparseM.ops), 25
+,matrix.csr-method (SparseM.ops), 25
-,matrix.csr-method (SparseM.ops), 25
/,matrix.csr-method (SparseM.ops), 25
<,matrix.csr-method (SparseM.ops), 25
<=,matrix.csr-method (SparseM.ops), 25
==,matrix.csr-method (SparseM.ops), 25

>,matrix.csr-method (SparseM.ops), 25
>=,matrix.csr-method (SparseM.ops), 25
[.matrix.coo (SparseM.ops), 25
[.matrix.csr (SparseM.ops), 25
[.matrix.diag.csr (SparseM.ops), 25
[<-.matrix.coo (SparseM.ops), 25
[<-.matrix.csr (SparseM.ops), 25
[<-.matrix.diag.csr (SparseM.ops), 25
%*%,ANY,ANY-method (SparseM.ops), 25
%*%,matrix,matrix.csr-method

(SparseM.ops), 25
%*%,matrix.csr,matrix-method

(SparseM.ops), 25
%*%,matrix.csr,matrix.csr-method

(SparseM.ops), 25
%*%,matrix.csr,numeric-method

(SparseM.ops), 25
%*%,numeric,matrix.csr-method

(SparseM.ops), 25
%*%-methods (SparseM.ops), 25
%/%,matrix.csr-method (SparseM.ops), 25
%%,matrix.csr-method (SparseM.ops), 25
&,matrix.csr-method (SparseM.ops), 25
^,matrix.csr-method (SparseM.ops), 25

as.matrix (SparseM.ontology), 23
as.matrix,ANY-method

(SparseM.ontology), 23
as.matrix,matrix.coo-method

(SparseM.ontology), 23
as.matrix,matrix.csc-method

(SparseM.ontology), 23
as.matrix,matrix.csr-method

(SparseM.ontology), 23
as.matrix,matrix.ssc-method

(SparseM.ontology), 23
as.matrix,matrix.ssr-method

(SparseM.ontology), 23
as.matrix.coo, 4
as.matrix.coo (SparseM.ontology), 23

32

INDEX 33

as.matrix.coo,ANY-method
(SparseM.ontology), 23

as.matrix.coo,matrix.csr-method
(SparseM.ontology), 23

as.matrix.csc (SparseM.ontology), 23
as.matrix.csc,ANY-method

(SparseM.ontology), 23
as.matrix.csc,matrix.coo-method

(SparseM.ontology), 23
as.matrix.csc,matrix.csc-method

(SparseM.ontology), 23
as.matrix.csc,matrix.csr-method

(SparseM.ontology), 23
as.matrix.csc,matrix.ssc-method

(SparseM.ontology), 23
as.matrix.csc,matrix.ssr-method

(SparseM.ontology), 23
as.matrix.csr (SparseM.ontology), 23
as.matrix.csr,ANY-method

(SparseM.ontology), 23
as.matrix.csr,matrix.coo-method

(SparseM.ontology), 23
as.matrix.csr,matrix.csc-method

(SparseM.ontology), 23
as.matrix.csr,matrix.csr.chol-method

(SparseM.ontology), 23
as.matrix.csr,matrix.ssc-method

(SparseM.ontology), 23
as.matrix.csr,matrix.ssr-method

(SparseM.ontology), 23
as.matrix.ssc (SparseM.ontology), 23
as.matrix.ssc,ANY-method

(SparseM.ontology), 23
as.matrix.ssc,matrix.coo-method

(SparseM.ontology), 23
as.matrix.ssc,matrix.csc-method

(SparseM.ontology), 23
as.matrix.ssc,matrix.csr-method

(SparseM.ontology), 23
as.matrix.ssc,matrix.ssc-method

(SparseM.ontology), 23
as.matrix.ssc,matrix.ssr-method

(SparseM.ontology), 23
as.matrix.ssr (SparseM.ontology), 23
as.matrix.ssr,ANY-method

(SparseM.ontology), 23
as.matrix.ssr,matrix.coo-method

(SparseM.ontology), 23

as.matrix.ssr,matrix.csc-method
(SparseM.ontology), 23

as.matrix.ssr,matrix.csr-method
(SparseM.ontology), 23

as.matrix.ssr,matrix.ssc-method
(SparseM.ontology), 23

as.matrix.ssr,matrix.ssr-method
(SparseM.ontology), 23

backsolve, 9
backsolve,ANY-method (SparseM.solve), 27
backsolve,matrix.csr.chol-method

(SparseM.solve), 27
backsolve-methods (SparseM.solve), 27

cbind.matrix.csr (SparseM.ops), 25
character or NULL-class, 2
chol, 8, 9
chol (SparseM.solve), 27
chol,ANY-method (SparseM.solve), 27
chol,matrix-method (SparseM.solve), 27
chol,matrix.csc-method (SparseM.solve),

27
chol,matrix.csr-method (SparseM.solve),

27
coef.slm (slm.methods), 18
coerce,matrix,matrix.csr-method

(SparseM.ontology), 23
coerce,matrix.csr,matrix.diag.csr-method

(SparseM.ontology), 23
coerce,numeric,matrix.diag.csr-method

(SparseM.ontology), 23
coerce,vector,matrix.csr-method

(SparseM.ontology), 23
coerce,vector,matrix.diag.csr-method

(SparseM.ontology), 23

det (SparseM.ops), 25
determinant, 25
determinant (SparseM.ops), 25
determinant,matrix.csr,logical-method

(SparseM.ops), 25
determinant,matrix.csr,missing-method

(SparseM.ops), 25
determinant,matrix.csr.chol,logical-method

(SparseM.ops), 25
determinant,matrix.csr.chol,missing-method

(SparseM.ops), 25
deviance.slm (slm.methods), 18

34 INDEX

diag,ANY-method (SparseM.ops), 25
diag,matrix.csr-method (SparseM.ops), 25
diag.assign,matrix.csr-method

(SparseM.ops), 25
diag<-,ANY-method (SparseM.ops), 25
diag<-,matrix.csr-method (SparseM.ops),

25
diag<-,matrix.diag.csr-method

(SparseM.ops), 25
diff,matrix.csr-method (SparseM.ops), 25
diff<-,ANY-method (SparseM.ops), 25
diff<-,matrix.csr-method (SparseM.ops),

25
dim,ANY-method (SparseM.ops), 25
dim,matrix.coo-method (SparseM.ops), 25
dim,matrix.csc-method (SparseM.ops), 25
dim,matrix.csr-method (SparseM.ops), 25
dim,matrix.ssc-method (SparseM.ops), 25
dim,matrix.ssr-method (SparseM.ops), 25
drop, 28

extractAIC.slm (slm.methods), 18

fitted.slm (slm.methods), 18
forwardsolve (SparseM.solve), 27
forwardsolve,matrix.csr.chol-method

(SparseM.solve), 27

image (SparseM.image), 22
image,matrix.csr-method

(SparseM.image), 22
initialize,ANY-method

(SparseM.ontology), 23
initialize,matrix.coo-method

(SparseM.ontology), 23
initialize,matrix.csr-method

(SparseM.ontology), 23
is.matrix.coo (SparseM.ontology), 23
is.matrix.csc (SparseM.ontology), 23
is.matrix.csr (SparseM.ontology), 23
is.matrix.ssc (SparseM.ontology), 23
is.matrix.ssr (SparseM.ontology), 23

kronecker,matrix,matrix.csr-method
(SparseM.ops), 25

kronecker,matrix.csr,matrix-method
(SparseM.ops), 25

kronecker,matrix.csr,matrix.csr-method
(SparseM.ops), 25

kronecker,matrix.csr,numeric-method
(SparseM.ops), 25

kronecker,numeric,matrix.csr-method
(SparseM.ops), 25

kronecker-methods (SparseM.ops), 25

lm, 29
logical, 23, 28
lsq, 3

matrix.coo-class, 4
matrix.csc-class, 5
matrix.csc.hb-class, 6
matrix.csr (SparseM.ontology), 23
matrix.csr-class, 7
matrix.csr.chol-class, 8
matrix.diag.csr-class

(matrix.csr-class), 7
matrix.ssc-class, 10
matrix.ssc.hb-class, 11
matrix.ssr-class, 12
model.guess (SparseM.hb), 20
model.guess,matrix.csc.hb-method

(SparseM.hb), 20
model.guess,matrix.ssc.hb-method

(SparseM.hb), 20
model.matrix, 7, 11
model.matrix (SparseM.hb), 20
model.matrix,ANY-method (SparseM.hb), 20
model.matrix,matrix.csc.hb-method

(SparseM.hb), 20
model.matrix,matrix.ssc.hb-method

(SparseM.hb), 20
model.matrix.matrix.ssc.hb

(SparseM.hb), 20
model.response, 7, 11
model.response (SparseM.hb), 20
model.response,ANY-method (SparseM.hb),

20
model.response,matrix.csc.hb-method

(SparseM.hb), 20
model.response,matrix.ssc.hb-method

(SparseM.hb), 20
model.xexact (SparseM.hb), 20
model.xexact,matrix.csc.hb-method

(SparseM.hb), 20
model.xexact,matrix.ssc.hb-method

(SparseM.hb), 20
mslm-class, 13

INDEX 35

ncol,matrix.csr-method (SparseM.ops), 25
norm, 26
norm (SparseM.ops), 25
norm,ANY-method (SparseM.ops), 25
norm,matrix.csr,character-method

(SparseM.ops), 25
norm,matrix.csr,missing-method

(SparseM.ops), 25
nrow,matrix.csr-method (SparseM.ops), 25
numeric, 9
numeric or NULL-class, 13

Ops.matrix.csr (SparseM.ops), 25
Ops.matrix.diag.csr (SparseM.ops), 25

print.slm (slm.methods), 18
print.summary.slm (slm.methods), 18

rainbow, 22
rbind.matrix.csr (SparseM.ops), 25
read.matrix.hb, 7, 11
read.matrix.hb (SparseM.hb), 20
residuals.slm (slm.methods), 18

show, 6
show,matrix.csc.hb-method

(matrix.csc.hb-class), 6
show,matrix.csr.chol-method

(matrix.csr-class), 7
show,matrix.ssc.hb-method

(matrix.csc.hb-class), 6
show,matrixSpM-method

(matrix.csr-class), 7
slm, 13, 14, 16–18, 26, 29
slm-class, 16
slm.fit, 16
slm.methods, 18
slm.wfit (slm.fit), 16
solve (SparseM.solve), 27
solve,ANY-method (SparseM.solve), 27
solve,matrix.csr-method

(SparseM.solve), 27
SparseM.hb, 20
SparseM.image, 22
SparseM.ontology, 23, 26
SparseM.ops, 25
SparseM.solve, 27
stop, 28
summary.mslm (slm.methods), 18

summary.mslm-class, 30
summary.slm (slm.methods), 18
summary.slm-class, 30

t,ANY-method (SparseM.ops), 25
t,matrix.coo-method (SparseM.ops), 25
t,matrix.csc-method (SparseM.ops), 25
t,matrix.csr-method (SparseM.ops), 25
triogramX, 31

warning, 28

X (triogramX), 31

	character or NULL-class
	lsq
	matrix.coo-class
	matrix.csc-class
	matrix.csc.hb-class
	matrix.csr-class
	matrix.csr.chol-class
	matrix.ssc-class
	matrix.ssc.hb-class
	matrix.ssr-class
	mslm-class
	numeric or NULL-class
	slm
	slm-class
	slm.fit
	slm.methods
	SparseM.hb
	SparseM.image
	SparseM.ontology
	SparseM.ops
	SparseM.solve
	summary.mslm-class
	summary.slm-class
	triogramX
	Index

