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B2mix Bivariate Binomial mixture estimation via Kiefer Wolfowitz MLE

Description

Interior point solution of Kiefer-Wolfowitz NPMLE for mixture of bivariate binomials

Usage

B2mix(x, k, u = 40, v = 40, weights = NULL, ...)

Arguments

x n by 2 matrix of counts of "successes" for binomial observations

k n by 2 matrix of Number of trials for binomial observations

u Grid Values for the mixing distribution defaults to equal spacing of length u on
[eps, 1- eps], if u is scalar.

v Grid Values for the mixing distribution defaults to equal spacing of length v on
[eps, 1- eps], if v is scalar.

weights replicate weights for x obervations, should sum to 1

... Other arguments to be passed to KWDual to control optimization

Details

This function was inspired by a paper by Kline and Walters (2019) on evaluation of audit experi-
ments for employment discrimination. An example of its usage is available with ‘demo(B2mix1)‘.
There can be identification issues particularly when the numbers of trials are modest as described
in Koenker and Gu (2024). Caveat emptor! The predict method for B2mix objects will compute
posterior means,
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Value

An object of class density with components:

u grid of evaluation points of the mixing density

v grid of evaluation points of the mixing density

y function values of the mixing density at x

g estimates of the mixture density at the distinct data values

logLik Log Likelihood value at the estimate

dy Bayes rule estimates of binomial probabilities for distinct data values

status exit code from the optimizer

Author(s)

R. Koenker

References

Kiefer, J. and J. Wolfowitz Consistency of the Maximum Likelihood Estimator in the Presence of
Infinitely Many Incidental Parameters Ann. Math. Statist. 27, (1956), 887-906.

Kline, P. and C. Walters, (2019) Audits as Evidence: Experiments, Ensembles and Enforcement,
preprint.

Koenker, R. and Gu, J. (2024) Empirical Bayes: Some Tools, Rules and Duals, Cambridge Univer-
sity Press.

See Also

‘Bmix‘ for univariate binomial mixtures.

bball U.S. Major League Batting Average Data: 2002-2012

Description

Data frame consisting of the following variables:

Details

Data is aggregated into half seasons: so season indicates whether the observation is in the first or
second half of the season of a given year. Only players who have more than 10 at bats in any half
season are included, and only players who have more than three half seasons are represented. The
transformed batting average is arcsin(sqrt((H + 1/4)/(AB + 1/2))). Only regular seasons data
are included. R programs to extract the data from the original sources are available on request.

• Name

• IdNum



BDGLmix 5

• Year

• Halfseason

• Pitcher

• HA transformed batting average;

• AB at bats

• H hits

• BB walks

• YOB Year of Birth;

• age age of the player

• agesq age squared

Source

ESPN Website: https://www.espn.com/mlb/stats

References

Gu, Jiaying and Roger Koenker (2015) Empirical Bayesball Remixed: Empirical Bayes Methods
for Longitudinal Data, J. Applied Econometrics, forthcoming.

BDGLmix Efron Bayesian Deconvolution Estimator for Gaussian Mixtures

Description

Efron (2016, 2019) penalized logspline density estimator for Gaussian mixture model g-modeling.
Returns an object of class GLmix to facilitate prediction compatible with Kiefer-Wolfowitz GLmix
estimation. In particular percentile confidence intervals can be constructed based on posterior quan-
tiles. Assumes homoscedastic standard Gaussian noise, for the moment.

Usage

BDGLmix(y, T = 300, sigma = 1, df = 5, c0 = 0.1)

Arguments

y Data: Sample Observations

T Undata: Grid Values defaults equal spacing of with T bins, when T is a scalar

sigma scale parameter of the Gaussian noise, may take vector value of length(y)

df degrees of freedom of the natural spline basis

c0 penalty parameter for the Euclidean norm penalty.

https://www.espn.com/mlb/stats
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Value

An object of class GLmix, density with components:

x points of evaluation on the domain of the density

y estimated function values at these points of the mixing density

sigma returns a sigma = 1 for compatibility with GLmix

Author(s)

Adapted from a similar implementation in the R package deconvolveR of Narasimhan and Efron.

References

Efron, B. (2016) Empirical Bayes deconvolution estimates, Biometrika, 103, 1–20, Efron, B. (2019)
Bayes, Oracle Bayes and Empirical Bayes, Statistical Science, 34, 177-201.

Bmix Binomial mixture estimation via Kiefer Wolfowitz MLE

Description

Interior point solution of Kiefer-Wolfowitz NPMLE for mixture of binomials

Usage

Bmix(x, k, v = 300, collapse = TRUE, weights = NULL, unique = FALSE, ...)

Arguments

x Count of "successes" for binomial observations

k Number of trials for binomial observations

v Grid Values for the mixing distribution defaults to equal spacing of length v on
[eps, 1- eps], if v is scalar.

collapse Collapse observations into cell counts.

weights replicate weights for x obervations, should sum to 1

unique option to check unique of reported solution

... Other arguments to be passed to KWDual to control optimization
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Details

The predict method for Bmix objects will compute means, medians or modes of the posterior ac-
cording to whether the Loss argument is 2, 1 or 0, or posterior quantiles if Loss is in (0,1). When
the number of trials is small the NPMLE may be non-unique. This happens when there exists a
vector v in the unit simplex of Rm such that Av = f where f = (n0/n, ..., nk/n) the observed
frequencies, and A is the k by m matrix with typical element

C(k, x)pxj (1− pj)
k−x.

If there exists such a solution, it follows that the maximal likelihood value is attained by any Ghat
such that

pj =

∫
C(k, j)pj(1− p)k−jdGhat(p) = nj/n,

for j = 0, ... , k. There will be many such solutions, but by the Caratheodory theorem any one of
them can be expressed as a linear combination of no more than k extreme points of the constraint
set. In contrast, when there are no solutions inside the simplex satisfying the equation, then the
NPMLE is the unique projection onto the boundary of that set. To facilitate checking this condition
if the check parameter is TRUE, the linear program is feasible and the unique component is returned
as TRUE if the program is infeasible, and FALSE is returned otherwise. This check is restricted to
settings in which k is fixed, and collapse is TRUE. See Robbins (1956, p 161) for some further
discussion of the binomial mixture model and a very clever alternative approach to prediction.

Value

An object of class density with components:

x grid midpoints of evaluation of the mixing density
y function values of the mixing density at x
g estimates of the mixture density at the distinct data values
logLik Log Likelihood value at the estimate
dy Bayes rule estimates of binomial probabilities for distinct data values
unique Flag indicating whether the solution is unique
status exit code from the optimizer

Author(s)

R. Koenker

References

Kiefer, J. and J. Wolfowitz Consistency of the Maximum Likelihood Estimator in the Presence of
Infinitely Many Incidental Parameters Ann. Math. Statist. 27, (1956), 887-906.

Koenker, R and I. Mizera, (2013) “Convex Optimization, Shape Constraints, Compound Decisions,
and Empirical Bayes Rules,” JASA, 109, 674–685.

Robbins, H. (1956) An Empirical Bayes Approach to Statistics, 3rd Berkeley Symposium.

Koenker, R. and J. Gu, (2017) REBayes: An R Package for Empirical Bayes Mixture Methods,
Journal of Statistical Software, 82, 1–26.
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BPmix Binomial mixtures with Poisson Trials via Kiefer Wolfowitz NPMLE

Description

Interior point solution of Kiefer-Wolfowitz NPMLE for mixture of Poisson Binomials

Usage

BPmix(x, m, v = 50, weights = NULL, ...)

Arguments

x Count of "successes" for binomial observations

m Number of trials for binomial observations

v Grid Values for the mixing distribution defaults to equal spacing of length v on
[eps, 1- eps], if v is scalar.

weights replicate weights for x obervations, should sum to 1

... Other arguments to be passed to KWDual to control optimization

Details

The joint distribution of the probabilities of success and the number of trials is estimated. The grid
specification for success probabilities is as for Bmix whereas the grid for the Poisson rate parameters
is currently the support of the observed trials. There is no predict method as yet. See demo(BPmix1).

Value

An object of class density with components:

v grid points of evaluation of the success probabilities

u grid points of evaluation of the Poisson rate for number of trials

y function values of the mixing density at (v,u)

g estimates of the mixture density at the distinct data values

logLik Log Likelihood value at the estimate

status exit code from the optimizer

Author(s)

R. Koenker

References

Kiefer, J. and J. Wolfowitz Consistency of the Maximum Likelihood Estimator in the Presence of
Infinitely Many Incidental Parameters Ann. Math. Statist. 27, (1956), 887-906.
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bwKW Bandwidth selection for KW smoothing

Description

Bandwidth selection for KW smoothing

Usage

bwKW(g, k = 1, minbw = 0.1)

Arguments

g KW fitted object

k multiplicative fudge factor

minbw minimum allowed value of bandwidth

Author(s)

R. Koenker

bwKW2 Bandwidth selection for bivariate KW smoothing

Description

Bandwidth selection for bivariate KW smoothing

Usage

bwKW2(g, k = 1)

Arguments

g bivariate KW fitted object

k multiplicative fudge factor

Author(s)

R. Koenker
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Cosslett Kiefer-Wolfowitz estimator for Cosslett (1983) estimator

Description

Kiefer-Wolfowitz-Cosslett estimator for binary response model.

Usage

Cosslett(x, y, v = 300, weights = NULL, ...)

Arguments

x is the observed utility difference between two choices, it would be possible to
extend this to make x a linear (index) function of some parameters

y is the binary outcome

v the unobserved utility difference taking values on a grid, by default this grid is
equally spaced with 300 distinct points, however it is known that the mass points
for the problem are located at the data points, x, so users may wish to set v =
sort(x) although if the sample size is large this can be slow.

weights replicate weights for x observations, should sum to 1

... optional parameters to be passed to KWDual to control optimization

Details

In the primal form of the problem the pseudo log likelihood is:

l(f |y) = sumi[yi log
∑
j

(I(vj <= xi) ∗ fj) + (1− yi) log
∑
j

(I(vj > xi) ∗ fj)]

as usual the implementation used here solves the corresponding dual problem. Cumsum of the out-
put y gives the CDF of the unobserved utility difference. See the demo(Cosslett1)and demo(Cosslett2)
for illustrations without any covariate, and demo(Cosslett3) for an illustration with a covariate us-
ing profile likelihood. This model is also known as current status linear regression in the biostatistics
literature, see e.g. Groeneboom and Hendrickx (2016) for recent results and references.

Value

an object of class density with the components:

x points of evaluation of the mixing density

y function values of the mixing density at x

logL log likelihood of estimated model

status exit code from the optimizer
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Author(s)

Jiaying Gu and Roger Koenker

References

Kiefer, J. and J. Wolfowitz (1956) Consistency of the Maximum Likelihood Estimator in the Pres-
ence of Infinitely Many Incidental Parameters, Ann. Math. Statist, 27, 887-906.

Cosslett, S. (1983) Distribution Free Maximum Likelihood Estimator of the Binary Choice Model,
Econometrica, 51, 765-782.

Groeneboom, P. and K. Hendrickx (2016) Current Status Linear Regression, preprint available from
https://arxiv.org/abs/1601.00202.

dhuber Huber density function

Description

Huber (1964) least favorable density for the Gaussian contamination model

Usage

dhuber(x, mu = 0, sigma = 1, k = 1.642, heps = hubereps(k))

Arguments

x points to evaluate the density

mu center of symmetry of the density

sigma standard deviation of the nominal Gaussian model

k Huber k value

heps Huber epsilson value

Value

A vector of density values

Author(s)

R. Koenker

https://arxiv.org/abs/1601.00202
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Finv Function inversion

Description

Given a function, F(x, ...), and a scalar y, find x such that F(x, ...) = y. Note that there is no checking
for the monotonicity of F wrt to x, or that the interval specified is appropriate to the problem. Such
fine points are entirely the responsibility of the user/abuser. If the interval specified doesn’t contain
a root some automatic attempt to expand the interval will be made. Originally intended for use with
F as ThreshFDR.

Usage

Finv(y, F, interval = c(0, 1), ...)

Arguments

y the scalar at which to evaluate the inverse

F the function

interval the domain within which to begin looking

... other arguments for the function F

Author(s)

R. Koenker

flies Medfly Data

Description

Medfly data from the Carey et al (1992) experiment. There are 1,203,646 uncensored survival
times!

Usage

flies
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Format

A data frame with 19072 observations on the following 17 variables.

age age at death in days

num frequency count of age at death

prcurr current proportion male

current current density

cohort cohort/pupal batch

size pupal size

cage cage number

female female = 1

cumul cumulative density

prcumu cumulative proportion male

begin initial cage density

prbegin initial proportion mail

size4 size group 4

size5 size group 5

size6 size group 6

size7 size group 7

size8 size group 8

Details

Quoting from Carey et al (1992) “...Pupae were sorted into one of five size classes using a pupal
sorter. This enabled size dimorphism to be eliminated as a potential source of sex-specific mortality
differences. Approximately, 7,200 medflies (both sexes) of a given size class were maintained in
each of 167 mesh covered, 15 cm by 60 cm by 90 cm aluminum cages. Adults were given a diet of
sugar and water, ad libitum, and each day dead flies were removed, counted and their sex determined
...”

References

Carey, J.R., Liedo, P., Orozco, D. and Vaupel, J.W. (1992) Slowing of mortality rates at older ages
in large Medfly cohorts, Science, 258, 457-61.

Koenker, R. and O. Geling (2001) Reappraising Medfly Longevity: A Quantile Regression Survival
Analysis, J. Am. Stat. Assoc, 96, 458-468.

Koenker, R. and Jiaying Gu, (2013) “Frailty, Profile Likelihood and Medfly Mortality,” Contem-
porary Developments in Statistical Theory: A Festschrift for Hira Lal Koul, S.N. Lahiri, A. Schick,
Ashis Sengupta, and T.N. Sriram, (eds.), Springer.
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Gammamix NPMLE for Gamma Mixtures

Description

A Kiefer-Wolfowitz MLE for Gamma mixture models

Usage

Gammamix(x, v = 300, shape = 1, weights = NULL, eps = 1e-10, ...)

Arguments

x vector of observed variances

v A vector of bin boundaries, if scalar then v equally spaced bins are constructed

shape vector of shape parameters corresponding to x

weights replicate weights for x obervations, should sum to 1

eps tolerance for default gridding

... optional parameters passed to KWDual to control optimization

Value

An object of class density with components:

x midpoints of the bin boundaries

y estimated function values of the mixing density

g function values of the mixture density at the observed x’s.

logLik the value of the log likelihood at the solution

dy Bayes rule estimates of

status the Mosek convergence status.

Author(s)

J. Gu and R. Koenker

References

Gu J. and R. Koenker (2014) Unobserved heterogeneity in income dynamics: an empirical Bayes
perspective, JBES, 35, 1-16.

Koenker, R. and J. Gu, (2017) REBayes: An R Package for Empirical Bayes Mixture Methods,
Journal of Statistical Software, 82, 1–26.

See Also

Gammamix for a general implementation for Gamma mixtures
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GLmix Kiefer-Wolfowitz NPMLE for Gaussian Location Mixtures

Description

Kiefer Wolfowitz Nonparametric MLE for Gaussian Location Mixtures

Usage

GLmix(x, v = 300, sigma = 1, hist = FALSE, histm = 300, weights = NULL, ...)

Arguments

x Data: Sample Observations

v Undata: Grid Values defaults equal spacing of with v bins, when v is a scalar

sigma scale parameter of the Gaussian noise, may take vector values of length(x)

hist If TRUE then aggregate x to histogram bins, when sigma is vector valued this
option is inappropriate unless there are only a small number of distinct sigma
values.

histm histogram bin boundaries, equally spacing with histm bins when scalar.

weights replicate weights for x obervations, should sum to 1

... other parameters to pass to KWDual to control optimization

Details

Kiefer Wolfowitz MLE as proposed by Jiang and Zhang for the Gaussian compound decision prob-
lem. The histogram option is intended for large problems, say n > 1000, where reducing the sample
size dimension is desirable. When sigma is heterogeneous and hist = TRUE the procedure tries to
do separate histogram binning for distinct values of sigma, however this is only feasible when there
are only a small number of distinct sigma. By default the grid for the binning is equally spaced on
the support of the data. This function does the normal convolution problem, for gamma mixtures of
variances see GVmix, or for mixtures of both means and variances TLVmix.

The predict method for GLmix objects will compute means, medians or modes of the posterior
according to whether the Loss argument is 2, 1 or 0, or posterior quantiles if Loss is in (0,1).

Value

An object of class density with components:

x points of evaluation on the domain of the density

y estimated function values at the points v, the mixing density

g the estimated mixture density function values at x

logLik Log likelihood value at the proposed solution

dy prediction of mean parameters for each observed x value via Bayes Rule

status exit code from the optimizer
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Author(s)

Roger Koenker

References

Kiefer, J. and J. Wolfowitz Consistency of the Maximum Likelihood Estimator in the Presence of
Infinitely Many Incidental Parameters Ann. Math. Statist. Volume 27, Number 4 (1956), 887-906.

Jiang, Wenhua and Cun-Hui Zhang General maximum likelihood empirical Bayes estimation of
normal means Ann. Statist., Volume 37, Number 4 (2009), 1647-1684.

Koenker, R and I. Mizera, (2013) “Convex Optimization, Shape Constraints, Compound Decisions,
and Empirical Bayes Rules,” JASA, 109, 674–685.

Koenker, R. and J. Gu, (2017) REBayes: An R Package for Empirical Bayes Mixture Methods,
Journal of Statistical Software, 82, 1–26.

GLVmix NPMLE of Gaussian Location-Scale Mixture Model

Description

A Kiefer-Wolfowitz procedure for ML estimation of a Gaussian model with possibly dependent
mean and variance components. This version differs from WGLVmix in that it doesn’t assume the
data is in longitudinal form. This version assumes a general bivariate distribution for the mixing
distribution. The defaults use a rather coarse bivariate gridding.

Usage

GLVmix(t, s, m, u = 30, v = 30, ...)

Arguments

t A vector of location estimates

s A vector of variance estimates

m A vector of sample sizes of the same length as t and s, or if scalar a common
sample size length

u A vector of bin boundaries for the location effects

v A vector of bin boundaries for the variance effects

... optional parameters to be passed to KWDual to control optimization
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Value

A list consisting of the following components:

u midpoints of mean bin boundaries
v midpoints of variance bin boundaries
fuv the function values of the mixing density.
logLik log likelihood value for mean problem
du Bayes rule estimate of the mixing density means.
dv Bayes rule estimate of the mixing density variances.
A Constraint matrix
status Mosek convergence status

Author(s)

R. Koenker and J. Gu

References

Gu, J. and R. Koenker (2014) Heterogeneous Income Dynamics: An Empirical Bayes Perspective,
JBES,35, 1-16.

Koenker, R. and J. Gu, (2017) REBayes: An R Package for Empirical Bayes Mixture Methods,
Journal of Statistical Software, 82, 1–26.

See Also

WTLVmix for an implementation assuming independent heterogeneity, and WGLVmix for a ver-
sion that requires access to a full longitudinal data structure.

Gompertzmix NPMLE for Gompertz Mixtures

Description

Kiefer-Wolfowitz NPMLE for Gompertz Mixtures of scale parameter

Usage

Gompertzmix(
x,
v = 300,
u = 300,
alpha,
theta,
hist = FALSE,
weights = NULL,
...

)
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Arguments

x Survival times

v Grid values for mixing distribution

u Grid values for mixing distribution

alpha Shape parameter for Gompertz distribution

theta Scale parameter for Gompertz Distribution

hist If TRUE aggregate to histogram counts

weights replicate weights for x obervations, should sum to 1

... optional parameters passed to KWDual to control optimization

Details

Kiefer Wolfowitz NPMLE density estimation for Gompertz scale mixtures. The histogram option
is intended for relatively large problems, say n > 1000, where reducing the sample size dimension
is desirable. By default the grid for the binning is equally spaced on the support of the data. Pa-
rameterization: f(t|alpha,theta,v) = theta * exp(v) * exp(alpha * t) * exp(-(theta/alpha) * exp(v) *
(exp(alpha*t)-1))

Value

An object of class density with components

x points of evaluation on the domain of the density

y estimated function values at the points x, the mixing density

logLik Log likelihood value at the proposed solution

dy Bayes rule estimates of theta at observed x

status exit code from the optimizer

Author(s)

Roger Koenker and Jiaying Gu

References

Kiefer, J. and J. Wolfowitz Consistency of the Maximum Likelihood Estimator in the Presence of
Infinitely Many Incidental Parameters Ann. Math. Statist. Volume 27, Number 4 (1956), 887-906.

See Also

Weibullmix



Gosset 19

Gosset Gosset Criminal Finger Data

Description

This data was generated by dithering the cell counts in the crimtab available in the base stats
package.

Usage

Gosset

Format

A data frame with 3000 observations on 2 variables.

LMFinger Length of Left Middle Finger (cm).
Height Height (cm)

Source

see the man page for crimtab

Guvenen Annual Increments in Log Income

Description

Kernel density estimates of the log density of annual increments in log income for U.S. individuals
over the period 1994-2013, as estimated by Guvenen.

Usage

Guvenen

Format

A data frame with 279 observations on two variables.

earnings annual increment in log income
logdensity estimated log density values

Source

Fatih Guvenen, Fatih Karahan, Serdar Ozkan and Jae Song, (2016) What Do Data on Millions
of U.S. Workers Reveal about Life-Cycle Earnings Dynamics? https://www.nber.org/system/
files/working_papers/w20913/w20913.pdf

https://www.nber.org/system/files/working_papers/w20913/w20913.pdf
https://www.nber.org/system/files/working_papers/w20913/w20913.pdf
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GVmix NPMLE for Gaussian Variance Heterogeneity

Description

A Kiefer-Wolfowitz MLE for Gaussian models with independent variances. This can be viewed as
a general form for χ2 mixtures, see Gammamix for a more general form for Gamma mixtures.

Usage

GVmix(x, m, v = 300, weights = NULL, ...)

Arguments

x vector of observed variances
m vector of sample sizes corresponding to x
v A vector of bin boundaries, if scalar then v equally spaced bins are constructed
weights replicate weights for x obervations, should sum to 1
... optional parameters passed to KWDual to control optimization

Value

An object of class density with components:

x midpoints of the bin boundaries
y estimated function values of the mixing density
g function values of the mixture density at the observed x’s.
logLik the value of the log likelihood at the solution
dy Bayes rule estimates of
status the Mosek convergence status.

Author(s)

R. Koenker

References

Koenker, R and I. Mizera, (2013) “Convex Optimization, Shape Constraints, Compound Decisions,
and Empirical Bayes Rules,” JASA, 109, 674–685.
Gu J. and R. Koenker (2014) Unobserved heterogeneity in income dynamics: an empirical Bayes
perspective, JBES, 35, 1-16.
Koenker, R. and J. Gu, (2017) REBayes: An R Package for Empirical Bayes Mixture Methods,
Journal of Statistical Software, 82, 1–26.

See Also

Gammamix for a general implementation for Gamma mixtures
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HLmix Kiefer-Wolfowitz NPMLE for Huber Location Mixtures

Description

Kiefer Wolfowitz Nonparametric MLE for Huber Location Mixtures

Usage

HLmix(x, v = 300, sigma = 1, k = 1.345, heps = hubereps(k), ...)

Arguments

x Data: Sample Observations

v Undata: Grid Values defaults equal spacing of with v bins, when v is a scalar

sigma scale parameter of the Gaussian noise, may take vector values of length(x)

k Huber k value

heps Huber epsilon contamination value, should match k, by default this is automati-
cally enforced.

... other parameters to pass to KWDual to control optimization

Details

Kiefer Wolfowitz NPMLE for location mixtures with Huber (1964) base density The Huber k spec-
ifies the point at which the influence function of the Huber M-estimator kinks. The predict method
for HLmix objects compute means, medians or modes of the posterior according to whether the Loss
argument is 2, 1 or 0, or posterior quantiles if Loss is in (0,1).

Value

An object of class density with components:

x points of evaluation on the domain of the density

y estimated function values at the points v, the mixing density

g marginal density values

logLik log likelihood

sigma sigma

dy posterior means at the observed x values

k Huber k

heps Huber epsilon

Author(s)

Roger Koenker
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hubereps Huber epsilon

Description

Find the epsilon corresponding to a Huber k value

Usage

hubereps(k)

Arguments

k Huber k value

Value

Huber epsilon value

Author(s)

R. Koenker

KW2smooth Smooth a bivariate Kiefer-Wolfowitz NPMLE

Description

Smooth a bivariate Kiefer-Wolfowitz NPMLE

Usage

KW2smooth(f, bw = NULL, k = 2)

Arguments

f bivariate KW fitted object as from GLVmix

bw bandwidth defaults to bwKW2(f),

k kernel 1 for Gaussian, 2 for biweight, 3 for triweight

Author(s)

R. Koenker
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KWDual Dual optimization for Kiefer-Wolfowitz problems

Description

Interface function for calls to optimizer from various REBayes functions There is currently only
one option for the optimization that based on Mosek. It relies on the Rmosek interface to R see
installation instructions in the Readme file in the inst directory of this package. This version of the
function is intended to work with versions of Mosek after 7.0.

Usage

KWDual(A, d, w, ...)

Arguments

A Linear constraint matrix

d constraint vector

w weights for x should sum to one.

... other parameters passed to control optimization: These may include rtol the
relative tolerance for dual gap convergence criterion, verb to control verbosity
desired from mosek, verb = 0 is quiet, verb = 5 produces a fairly detailed it-
eration log, control is a control list consisting of sublists iparam, dparam,
and sparam, containing elements of various mosek control parameters. See
the Rmosek and Mosek manuals for further details. A prime example is rtol
which should eventually be deprecated and folded into control, but will per-
sist for a while for compatibility reasons. The default for rtol is 1e-6, but
in some cases it is desirable to tighten this, say to 1e-10. Another example
that motivated the introduction of control would be control = list(iparam =
list(num_threads = 1)), which forces Mosek to use a single threaded process.
The default allows Mosek to uses multiple threads (cores) if available, which is
generally desirable, but may have unintended (undesirable) consequences when
running simulations on clusters.

Value

Returns a list with components:

f dual solution vector, the mixing density

g primal solution vector, the mixture density evaluated at the data points

logLik log likelihood

status return status from Mosek

. Mosek termination messages are treated as warnings from an R perspective since solutions pro-
ducing, for example, MSK_RES_TRM_STALL: The optimizer is terminated due to slow progress,
may still provide a satisfactory solution, especially when the return status variable is "optimal".
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Author(s)

R. Koenker

References

Koenker, R and I. Mizera, (2013) “Convex Optimization, Shape Constraints, Compound Decisions,
and Empirical Bayes Rules,” JASA, 109, 674–685.

Mosek Aps (2015) Users Guide to the R-to-Mosek Optimization Interface, https://docs.mosek.
com/8.1/rmosek/index.html.

Koenker, R. and J. Gu, (2017) REBayes: An R Package for Empirical Bayes Mixture Methods,
Journal of Statistical Software, 82, 1–26.

KWPrimal Primal optimization for Kiefer-Wolfowitz problems

Description

Interface function for calls to optimizer from various REBayes functions There is currently only
one option for the optimization that based on Mosek. It relies on the Rmosek interface to R see
installation instructions in the Readme file in the inst directory of this package. This version of the
function works only with versions of Mosek 9.0. This is an experimental alternative to the main
KWDual which is the usual interface from fitting functions to Mosek, caveat emptor..

Usage

KWPrimal(A, d, w, ...)

Arguments

A Linear constraint matrix

d constraint vector

w weights for x should sum to one.

... other parameters passed to control optimization: These may include rtol the
relative tolerance for dual gap convergence criterion, verb to control verbosity
desired from mosek, verb = 0 is quiet, verb = 5 produces a fairly detailed it-
eration log, control is a control list consisting of sublists iparam, dparam,
and sparam, containing elements of various mosek control parameters. See
the Rmosek and Mosek manuals for further details. A prime example is rtol
which should eventually be deprecated and folded into control, but will per-
sist for a while for compatibility reasons. The default for rtol is 1e-6, but
in some cases it is desirable to tighten this, say to 1e-10. Another example
that motivated the introduction of control would be control = list(iparam =
list(num_threads = 1)), which forces Mosek to use a single threaded process.
The default allows Mosek to uses multiple threads (cores) if available, which is
generally desirable, but may have unintended (undesirable) consequences when
running simulations on clusters.

https://docs.mosek.com/8.1/rmosek/index.html
https://docs.mosek.com/8.1/rmosek/index.html
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Value

Returns a list with components:

f primal solution vector, the mixing density

g the mixture density evaluated at the data points

logLik log likelihood

status return status from Mosek

. Mosek termination messages are treated as warnings from an R perspective since solutions pro-
ducing, for example, MSK_RES_TRM_STALL: The optimizer is terminated due to slow progress,
may still provide a satisfactory solution, especially when the return status variable is "optimal".

Author(s)

R. Koenker

References

Koenker, R and I. Mizera, (2013) “Convex Optimization, Shape Constraints, Compound Decisions,
and Empirical Bayes Rules,” JASA, 109, 674–685.

Mosek Aps (2015) Users Guide to the R-to-Mosek Optimization Interface, https://docs.mosek.
com/8.1/rmosek/index.html.

Koenker, R. and J. Gu, (2017) REBayes: An R Package for Empirical Bayes Mixture Methods,
Journal of Statistical Software, 82, 1–26.

KWsmooth Smooth a Kiefer-Wolfowitz NPMLE

Description

Smooth a Kiefer-Wolfowitz NPMLE

Usage

KWsmooth(f, bw = NULL, k = 2)

Arguments

f KW fitted object

bw bandwidth defaults to 2 * mad

k kernel 2 for biweight, 3 for triweight

Author(s)

R. Koenker

https://docs.mosek.com/8.1/rmosek/index.html
https://docs.mosek.com/8.1/rmosek/index.html
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L1norm L1norm for piecewise linear functions

Description

Intended to compute the L1norm of the difference between two distribution functions.

Usage

L1norm(F, G, eps = 1e-06)

Arguments

F A stepfunction

G Another stepfunction

eps A tolerance parameter

Details

Both F and G should be of class stepfun, and they should be non-defective distribution functions.
There are some tolerance issues in checking whether both functions are proper distribution functions
at the extremes of their support. For simulations it may be prudent to wrap L1norm in try.

Value

A real number.

Author(s)

R. Koenker

Examples

# Make a random step (distribution) function with Gaussian knots
rstep <- function(n){

x <- sort(rnorm(n))
y <- runif(n)
y <- c(0,cumsum(y/sum(y)))
stepfun(x,y)
}

F <- rstep(20)
G <- rstep(10)
S <- L1norm(F,G)
plot(F,main = paste("||F - G|| = ", round(S,4)))
lines(G,col = 2)
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Lfdr Local False Discovery Rate Estimation

Description

A Generic function for estimation of Local FDR

Usage

Lfdr(G, ...)

## S3 method for class 'GLVmix'
Lfdr(G, newdata, cnull, tail = "R", ...)

## S3 method for class 'WGLVmix'
Lfdr(G, newdata, cnull, tail = "R", ...)

## S3 method for class 'GLmix'
Lfdr(G, newdata, cnull, tail = "R", ...)

Arguments

G A fitted object from some G-modeling function.

... other arguments

newdata data frame to in which to evaluate Lfdr

cnull threshold for evaluation of Lfdr

tail either "R" or "L" to specify tail focus

Details

Given an estimated mixing distribution, G, Lfdr computes an estimated local false discovery rate at
a specified set of points and threshold value cnull. The argument G can be specified as the fitted
object from one of several possible fitting routines for nonparametric mixing distributions.

medde Maximum Entropy [De]Regularized Density Estimation

Description

Density estimation based on maximum entropy methods
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Usage

medde(
x,
v = 300,
lambda = 0.5,
alpha = 1,
Dorder = 1,
w = NULL,
mass = 1,
rtol = 1e-06,
verb = 0,
control = NULL

)

Arguments

x Data: either univariate or bivariate, the latter is highly experimental

v Undata: either univariate or bivariate, univariate default is an equally spaced
grid of 300 values, for bivariate data there is not (yet) a default. Making v extend
well beyond the support of x is advisable to avoid weird boundary behavior of
the estimated density.

lambda total variation penalty smoothing parameter, if lambda is in [-1,0], a shape con-
straint is imposed. see Koenker and Mizera (2010) for further details. When
Dorder = 0, the shape constraint imposes that the density is monotonically de-
creasing, when Dorder = 1 it imposes a concavity constraint.

alpha Renyi entropy parameter characterizing fidelity criterion by default 1 is log-
concave and 0.5 is Hellinger.

Dorder Order of the derivative operator for the penalty default is Dorder = 1, corre-
sponding to TV norm constraint on the first derivative, or a concavity constraint
on some transform of the density. Dorder = 0 imposes a TV penalty on the
function itself, or when lambda < 0 a monotonicity constraint.

w weights associated with x,

mass normalizing constant for fitted density,

rtol Convergence tolerance for Mosek algorithm,

verb Parameter controlling verbosity of solution, 0 for silent, 5 gives rather detailed
iteration log.

control Mosek control list see KWDual documentation

Details

See the references for further details. And also Mosek "Manuals". The acronym, according to the
urban dictionary has a nice connection to a term used in Bahamian dialect, mostly on the Family
Islands like Eleuthera and Cat Island meaning "mess with" "get involved," "get entangled," "fool
around," "bother:" "I don’t like to medder up with all kinda people" "Don’t medder with people
(chirren)" "Why you think she medderin up in their business."
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This version implements a class of penalized density estimators solving:

min
x

ϕ(x1)|A1x1 −A2x2 = b, 0 ≤ x1,−λ ≤ x2 ≤ λ

where x is a vector with two component subvectors: x1 is a vector of function values of the density
x2 is a vector of dual values, λ is typically positive, and controls the fluctuation of the Dorder
derivative of some transform of the density. When alpha = 1 this transform is simply the logarithm
of the density, and Dorder = 1 yields a piecewise exponential estimate; when Dorder = 2 we obtain
a variant of Silverman’s (1982) estimator that shrinks the fitted density toward the Gaussian, i.e.
with total variation of the second derivative of logf equal to zero. See demo(Silverman) for an
illustration of this case. If λ is in (−1, 0] then the x2 TV constraint is replaced by x2 ≥ 0, which
for α = 1, constrains the fitted density to be log-concave; for α = 0.5, −1/

√
f is constrained

to be concave; and for α ≤ 0, 1/fα−1 is constrained to be concave. In these cases no further
regularization of the smoothness of density is required as the concavity constraint acts as regularizer.
As explained further in Koenker and Mizera (2010) and Han and Wellner (2016) decreasing α
constrains the fitted density to lie in a larger class of quasi-concave densities. See demo(velo) for
an illustration of these options, but be aware that more extreme α pose more challenges from an
numerical optimization perspective. Fitting for α < 1 employs a fidelity criterion closely related
to Renyi entropy that is more suitable than likelihood for very peaked, or very heavy tailed target
densities. For λ < 0 fitting for Dorder != 1 proceed at your own risk. A closely related problem
is illustrated in the demo Brown which imposes a convexity constraint on 0.5x2 + logf(x). This
ensures that the resulting Bayes rule, aka Tweedie formula, is monotone in x, as described further
in Koenker and Mizera (2013).

Value

An object of class "medde" with components

x points of evaluation on the domain of the density

y estimated function values at the evaluation points x

status exit status from Mosek

Author(s)

Roger Koenker and Ivan Mizera

References

Chen, Y. and R.J. Samworth, (2013) "Smoothed log-concave maximum likelihood estimation with
applications", Statistica Sinica, 23, 1373–1398.

Han, Qiyang and Jon Wellner (2016) “Approximation and estimation of s-concave densities via
Renyi divergences, Annals of Statistics, 44, 1332-1359.

Koenker, R and I. Mizera, (2007) “Density Estimation by Total Variation Regularization,” Advances
in Statistical Modeling and Inference: Essays in Honor of Kjell Doksum, V.N. Nair (ed.), 613-634.

Koenker, R and I. Mizera, (2006) “The alter egos of the regularized maximum likelihood density es-
timators: deregularized maximum-entropy, Shannon, Renyi, Simpson, Gini, and stretched strings,”
Proceedings of the 7th Prague Symposium on Asymptotic Statistics.
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Koenker, R and I. Mizera, (2010) “Quasi-Concave Density Estimation” Annals of Statistics, 38,
2998-3027.

Koenker, R and I. Mizera, (2013) “Convex Optimization, Shape Constraints, Compound Decisions,
and Empirical Bayes Rules,” JASA, 109, 674–685.

Koenker, R and I. Mizera, (2014) “Convex Optimization in R.”, Journal of Statistical Software, 60,
1-23.

See Also

This function is based on an earlier function of the same name in the deprecated package MeddeR
that was based on an R-Matlab interface. A plotting method is available, or medde estimates can be
added to plots with the usual lines(meddefit, ... invocation. For log concave estimates there is
also a quantile function qmedde and a random number generation function rmedde, eventually there
should be corresponding functionality for other alphas.

Examples

## Not run:
#Maximum Likelihood Estimation of a Log-Concave Density
set.seed(1968)
x <- rgamma(50,10)
m <- medde(x, v = 50, lambda = -.5, verb = 5)
plot(m, type = "l", xlab = "x", ylab = "f(x)")
lines(m$x,dgamma(m$x,10),col = 2)
title("Log-concave Constraint")

## End(Not run)

## Not run:
#Maximum Likelihood Estimation of a Gamma Density with TV constraint
set.seed(1968)
x <- rgamma(50,5)
f <- medde(x, v = 50, lambda = 0.2, verb = 5)
plot(f, type = "l", xlab = "x", ylab = "f(x)")
lines(f$x,dgamma(f$x,5),col = 2)
legend(10,.15,c("ghat","true"),lty = 1, col = 1:2)
title("Total Variation Norm Constraint")

## End(Not run)

Norberg Norberg Life Insurance Data

Description

Norwegian Life Insurance Exposures and Claims
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Usage

Norberg

Format

A data frame with 72 observations on the following 3 variables.

OccGroup Occupational Group

Exposure Exposures

Death Observed Deaths

Details

The data arise from 1125 original groups insured during all or part of the period 1982-85 by a major
Nowegian insurance company. Exposures can be normalized by a factor of 344 as in Hastrup (2000)
and then can be interpreted as the apriori expected number of claims (deaths) for each group. The
original 1125 groups were aggregated into 72 as in Norberg (1989).

References

Norberg, R. (1989) Experience rating in group life insurance, Scand. Actuarial J.,194-224.

Haastrup, S. (2000) Comparison of some Bayesian analyses of heterogeneity in group life insurance,
Scand. Actuarial J.,2-16.

NPmix Normal mixture with Poisson sample size via Kiefer Wolfowitz NPMLE

Description

Interior point solution of Kiefer-Wolfowitz NPMLE for mixture of Normal/Poissons

Usage

NPmix(x, m, v = 50, u = 50, weights = NULL, ...)

Arguments

x observed response for Gaussian observations

m Number of trials for Poisson observations

v Grid Values for the Gaussian means mixing distribution defaults to equal spacing
of length v on [min(x) + eps, max(x) - eps], if v is scalar.

u Grid Values for the Poisson rate mixing distribution defaults to equal spacing of
length u on [min(m) + eps, max(m) - eps], if u is scalar.

weights replicate weights for x obervations, should sum to 1

... Other arguments to be passed to KWDual to control optimization
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Details

The joint distribution of the means and the number of trials determining sample standard deviations
is estimated. The grid specification for means is as for GLmix whereas the grid for the Poisson rate
parameters by default depends on the support of the observed trials. There is no predict method as
yet. See demo(NPmix1).

Value

An object of class density with components:

v grid points of evaluation of the success probabilities

u grid points of evaluation of the Poisson rate for number of trials

y function values of the mixing density at (v,u)

g estimates of the mixture density at the distinct data values

logLik Log Likelihood value at the estimate

status exit code from the optimizer

Author(s)

R. Koenker and J. Gu

References

Kiefer, J. and J. Wolfowitz Consistency of the Maximum Likelihood Estimator in the Presence of
Infinitely Many Incidental Parameters Ann. Math. Statist. 27, (1956), 887-906.

plot.GLVmix Plot a GLVmix object

Description

Given a fitted mixture model by GLVmix plot the estimated mass points

Given a fitted mixture model by GLVmix plot the estimated mass points

Usage

## S3 method for class 'GLVmix'
plot(x, ...)

## S3 method for class 'GLVmix'
plot(x, ...)

Arguments

x is the fitted object

... other arguments to pass to symbols, notably e.g. add = TRUE
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Value

nothing (invisibly)

nothing (invisibly)

plot.medde Plotting method for medde objects

Description

Plotting method for medde objects

Usage

## S3 method for class 'medde'
plot(x, ...)

Arguments

x object obtained from medde fitting

... other parameters to be passed to plot method

Pmix Poisson mixture estimation via Kiefer Wolfowitz MLE

Description

Poisson mixture estimation via Kiefer Wolfowitz MLE

Usage

Pmix(x, v = 300, support = NULL, exposure = NULL, ...)

Arguments

x Data: Sample observations (integer valued)

v Grid Values for the mixing distribution defaults to equal spacing of length v
when v is specified as a scalar

support a 2-vector containing the lower and upper support points of sample observations
to account for possible truncation.

exposure observation specific exposures to risk see details

... other parameters passed to KWDual to control optimization
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Details

The predict method for Pmix objects will compute means, medians or modes of the posterior ac-
cording to whether the Loss argument is 2, 1 or 0, or posterior quantiles if Loss is in (0,1).

In the default case exposure = 1 it is assumed that x contains individual observations that are ag-
gregated into count bins via table. When exposure has the same length as x then it is presumed to
be individual specific risk exposure and the Poisson mixture is taken to be x|v Poi(v ∗ exposure)
and the is not aggregated. See for example the analysis of the Norberg data in Koenker and Gu
(2016).

Value

An object of class density with components:

x points of evaluation of the mixing density

y function values of the mixing density at x

g function values of the mixture density on 0, 1, ...max(x) + 1

logLik Log Likelihood value at the estimate

dy Bayes rule estimate of Poisson rate parameter at each x

status exit code from the optimizer

Author(s)

Roger Koenker and Jiaying Gu

References

Kiefer, J. and J. Wolfowitz Consistency of the Maximum Likelihood Estimator in the Presence of
Infinitely Many Incidental Parameters Ann. Math. Statist. Volume 27, Number 4 (1956), 887-906.

Koenker, R. and J. Gu, (2017) REBayes: An R Package for Empirical Bayes Mixture Methods,
Journal of Statistical Software, 82, 1–26.

predict.B2mix Predict Method for Bmix

Description

Predict Method for Binomial Mixtures

Usage

## S3 method for class 'B2mix'
predict(object, newdata, Loss = 2, newk, ...)
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Arguments

object fitted object of class "B2mix"

newdata Values at which prediction is desired an n by 2 matrix

Loss Loss function used to generate prediction: Currently supported values: 2 to get
mean predictions, 1 to get median predictions, 0 to get modal predictions or any
tau in (0,1) to get tau-th quantile predictions.

newk k values (number of trials) for the predictions an n by 2 matrix

... optional arguments to predict

Details

The predict method for B2mix objects will compute posterior means.

Value

A vector of predictions

Author(s)

Jiaying Gu and Roger Koenker

predict.Bmix Predict Method for Bmix

Description

Predict Method for Binomial Mixtures

Usage

## S3 method for class 'Bmix'
predict(object, newdata, Loss = 2, newk, ...)

Arguments

object fitted object of class "Bmix"

newdata Values at which prediction is desired

Loss Loss function used to generate prediction: Currently supported values: 2 to get
mean predictions, 1 to get median predictions, 0 to get modal predictions or any
tau in (0,1) to get tau-th quantile predictions.

newk k values (number of trials) for the predictions

... optional arguments to predict



36 predict.GLmix

Details

The predict method for Bmix objects will compute means, quantiles or modes of the posterior ac-
cording to the Loss argument. Typically, newdata would be passed to predict

Value

A vector of predictions

Author(s)

Jiaying Gu

predict.GLmix Predict Method for GLmix

Description

Predict Method for Gaussian Location Mixtures

Usage

## S3 method for class 'GLmix'
predict(object, newdata, Loss = 2, newsigma = NULL, ...)

Arguments

object fitted object of class "GLmix"

newdata Values at which prediction is desired

Loss Loss function used to generate prediction: Currently supported values: 2 to get
mean predictions, 1 to get median predictions, 0 to get modal predictions or any
tau in (0,1) to get tau-th quantile predictions.

newsigma sigma values for the predictions

... optional arguments to predict

Details

The predict method for GLmix objects will compute means, quantiles or modes of the posterior
according to the Loss argument. Typically, newdata would be passed to predict

Value

A vector of predictions

Author(s)

Roger Koenker
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predict.GLVmix Predict Method for GLVmix

Description

Predict Method for Gaussian Location-scale Mixtures

Usage

## S3 method for class 'GLVmix'
predict(object, newdata, Loss = 2, ...)

Arguments

object Fitted object of class "GLVmix"

newdata data.frame with components(t,s,m) at which prediction is desired

Loss Loss function used to generate prediction: Currently supported values: 2 to get
mean predictions, 1 to get median predictions, 0 to get modal predictions or any
tau in (0,1) to get tau-th quantile predictions.

... optional arguments to predict

Details

The predict method for GLmix objects will compute means, quantiles or modes of the posterior
according to the Loss argument. Typically, newdata would be passed to predict. Note that these
predictions are for the location parameter only.

Value

A vector of predictions

Author(s)

Roger Koenker

predict.HLmix Predict Method for HLmix

Description

Predict Method for Huber Location Mixtures

Usage

## S3 method for class 'HLmix'
predict(object, newdata, Loss = 2, newsigma = NULL, ...)
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Arguments

object fitted object of class "HLmix"

newdata Values at which prediction is desired

Loss Loss function used to generate prediction: Currently supported values: 2 to get
mean predictions, 1 to get median predictions, 0 to get modal predictions or any
tau in (0,1) to get tau-th quantile predictions.

newsigma sigma values for the predictions

... optional arguments to predict

Details

The predict method for HLmix objects computes means, quantiles or modes of the posterior accord-
ing to the Loss argument. Typically, newdata would be passed to predict. Note that if newdata is
simply equal to the original observations (denoising case) then the

Value

A vector of predictions

Author(s)

Roger Koenker

predict.Pmix Predict Method for Pmix

Description

Predict Method for Poisson Mixtures

Usage

## S3 method for class 'Pmix'
predict(object, newdata, Loss = 2, newexposure = NULL, ...)

Arguments

object fitted object of class "Pmix"

newdata Values at which prediction is desired

Loss Loss function used to generate prediction. Currently supported values: 2 to get
mean predictions, 1 to get harmonic mean predictions, 0 to get modal predictions
or any tau in (0,1) to get tau-th quantile predictions. The posterior harmonic
mean is the Bayes rule for quadratic loss weighted by variances as in Clevenson
and Zidek (1975).

newexposure exposure values for the predictions

... optional arguments to predict
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Details

The predict method for Pmix objects will compute means, quantiles or modes of the posterior ac-
cording to the Loss argument. Typically, newdata would be passed to predict

Value

A vector of predictions

Author(s)

Jiaying Gu and Roger Koenker

References

Clevenson, M. L. and Zidek, J. V. 1975. Simultaneous Estimation of the Means of Independent
Poisson Laws, Journal of the American Statistical Association, 70, 698-705.

predict.WGLVmix Predict Method for WGLVmix

Description

Predict Method for Gaussian Location-scale Mixtures (Longitudinal Version)

Usage

## S3 method for class 'WGLVmix'
predict(object, newdata, Loss = 2, ...)

Arguments

object Fitted object of class "GLVmix"

newdata data.frame with components(y,id,w) at which prediction is desired this data
structure must be compatible with that of WGLVmix, if newdata$w is NULL then
w is replaced by a vector of ones of length(y)

Loss Loss function used to generate prediction: Currently supported values: 2 to get
mean predictions, 1 to get median predictions, 0 to get modal predictions or any
tau in (0,1) to get tau-th quantile predictions.

... optional arguments to predict

Details

The predict method for WGLmix objects will compute means, quantiles or modes of the posterior
according to the Loss argument. Typically, newdata would be passed to predict. Note that these
predictions are for the location parameter only.
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Value

A vector of predictions

Author(s)

Roger Koenker

psychtest Lord and Cressie Binomial Psychological Test Data

Description

Frequencies of test scores (number of correct answers) on a psychological test with 20 questions.

Usage

psychtest

Format

A data frame with 21 observations on 2 variables.

x number of correct answers (out of 20 questions)
k frequency out of 12990 exams.

Source

Lord, F.M. and N. Cressie (1975). An Empirical Bayes Procedure for Finding an Interval Estimate,
Sankhya, 37, 1-9.

qKW Quantiles of KW fit

Description

Quantiles of KW fit

Usage

qKW(g, q)

Arguments

g KW fitted object
q vector of quantiles to be computed

Author(s)

R. Koenker
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qKW2 Quantiles of bivariate KW fit

Description

Quantiles of bivariate KW fit

Usage

qKW2(g, q)

Arguments

g KW fitted object

q vector of quantiles to be computed

Author(s)

R. Koenker

qmedde Quantile function for medde estimate

Description

Slightly modified version borrowed from the package logcondens Todo: extend this to cases with
α! = 1.

Usage

qmedde(p, medde)

Arguments

p vector of probabilities at which to evaluate the quantiles

medde fitted object from medde
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rKW Random sample from KW object

Description

Random sample from KW object

Usage

rKW(n, g)

Arguments

n sample size

g KW object

Author(s)

R. Koenker

RLR Regularized Logistic Regression

Description

Logistic Regression with lasso like penalties

Usage

RLR(X, Y, D, lambda, ...)

Arguments

X a design matrix for the unconstrained logistic regression model

Y a response vector of Boolean values, or n by 2 matrix of binomials as in glm

D is a matrix specifying the penalty, diag(ncol(X)) for the conventional lasso
penalty

lambda a scalar specifying the intensity of one’s belief in the prior. No provision for
automatic selection has been made (yet).

... other parameters passed to control optimization: These may include rtol the
relative tolerance for dual gap convergence criterion, verb to control verbosity
desired from mosek, verb = 0 is quiet, verb = 5 produces a fairly detailed itera-
tion log. See the documentation for KWDual for further details.
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Details

In some logistic regression problems, especially those with a large number of fixed effects like
the Bradley-Terry rating model, it may be plausible to consider groups of effects that would be
considered equivalence classes. One way to implement such prior information is to impose some
form of regularization penalty. In the general formulation we are trying to solve the problem:

min ℓ(θ|X, y) + ∥Dθ∥1

. For example in the Bradley-Terry rating model, we may consider penalties of the form,

∥Dθ∥1 =
∑
i<j

|θi − θj |

so differences in all pairs of ratings are pulled together. This form of the penalty has been used by
Hocking et al (2011) for clustering, by Masarotto and Varin (2012) for estimation of the Bradley
Terry model and by Gu and Volgushev (2019) for grouping fixed effects in panel data models. This
is an implementation in Mosek, so the package Rmosek and Mosek must be available at run time.
The demo(RLR1) illustrates use with the conventional lasso penalty and produces a lasso shrinkage
plot. The demo(RLR2) illustrates use with the ranking/grouping lasso penalty and produces a plot
of how the number of groups is reduced as lambda rises.

Value

A list with components:

coef vector of coefficients

logLik log likelihood value at the solution

status return status from the Mosek optimizer

.

Author(s)

Roger Koenker with crucial help from Michal Adamaszek of Mosek ApS

References

Gu, J. and Volgushev, S. (2019), ‘Panel data quantile regression with grouped fixed effects’, Journal
of Econometrics, 213, 68–91.

Hocking, T. D., Joulin, A., Bach, F. and Vert, J.-P. (2011), ‘Clusterpath: an algorithm for clustering
using convex fusion penalties’, Proceedings of the 28th International Conference on International
Conference on Machine Learning, 745–752.

Masarotto, G. and Varin, C. (2012), ‘The ranking lasso and its application to sport tournaments’,
The Annals of Applied Statistics, 6, 1949–1970.
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rmedde Random number generation from a medde estimate

Description

Random number generation from a medde estimate

Usage

rmedde(n, medde, smooth = TRUE)

Arguments

n number of observations desired in calls to rmedde

medde fitted medde object for calls in qmedde and rmedde

smooth option to draw random meddes from the smoothed density

Rxiv Archive function for auxiliary files for latex documents

Description

Creates a tar.gz file with all of the R files needed to recreate the tables and figures that appear in
the paper. Should be considered experimental at this stage. It presumes that tables are generated
with something like the Hmisc latex function and included in the latex document with input
commands. Likewise figures are assumed to be included with includegraphics and generated
by R in pdf format. This was originally developed to sort out the files for "Empirical Bayesball
Remixed". An optional side of effect of the function to create a tar.gz file with the gzipped R files
required for the paper.

Usage

Rxiv(fname, figures = "figures", tables = "tables", tar = FALSE)

Arguments

fname name of the latex file of the paper sans .tex suffix

figures name of the directory with the files for figures

tables name of the directory with the files for tables

tar logical flag, if TRUE generate a gzipped tar file of .R files
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Value

a list with the following components

Rtables a character array with two columns: .tex files and .R files

Rfigures a character array with two columns: .pdf files and .R files

Rother a character vector with other R files required.

Rcached a character vector with cached Rda files

Author(s)

R. Koenker

tacks Beckett and Diaconis flipping tacks data

Description

This data was generated by Beckett and Diaconis (1994). They describe it as follows: "The example
involves repeated rolls of a common thumbtack. A one was recorded if the tack landed point up
and a zero was recorded if the tack landed point down. All tacks started point down. Each tack was
flicked or hit with the fingers from where it last rested. A fixed tack was flicked 9 times. The data
are recorded in Table 1. There are 320 9-tuples. These arose from 16 different tacks, 2 “flickers,”
and 10 surfaces. The tacks vary considerably in shape and in proportion of ones. The surfaces
varied from rugs through tablecloths through bathroom floors." Following Liu (1996), we treat the
data as though they came from 320 independent binomials. See demo(Bmix1) for further details.

Usage

tacks

Format

A data frame with 320 observations on 2 variables.

x a numeric vector giving the number of tacks landed point up.

k a numeric vector giving the number of trials.

Source

Beckett, L. and Diaconis. P. (1994). Spectral analysis for discrete longitudinal data, Adv. Math.,
103: 107-128.

References

Liu, J.S. (1996). Nonparametric Hierarchical Bayes via Sequential Imputations. Annals of Statis-
tics, 24: 911-930.
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tannenbaum Perverse Gaussian Mixture data

Description

Gaussian Location Mixture data to illustrate Mosek tolerance problem

Usage

tannenbaum

Format

5000 iid Gaussians This data set was randomly generated in the course of trying to understand
some anomalies in estimating Gaussian location mixture problems with GLmix. It is used by
demo(tannenbaum) to illustrate that sometimes it is worthwhile to tighten the default convergence
tolerance for Mosek.

ThreshFDR Thresholding for False Discovery Rate

Description

This function approximates FDR for various values of lambda and is usually employed in conjunc-
tion with Finv to find an appropriate cutoff value lambda.

Usage

ThreshFDR(lambda, stat, v)

Arguments

lambda is the proposed threshold

stat is the statistic used for ranking

v is the local false discovery statistic
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TLmix NPMLE for Student t location mixtures

Description

Kiefer Wolfowitz NPMLE for Student t location mixtures

Usage

TLmix(x, v = 300, u = 300, df = 1, hist = FALSE, weights = NULL, ...)

Arguments

x Data: Sample Observations

v bin boundaries defaults to equal spacing of length v

u bin boundaries for histogram binning: defaults to equal spacing

df Number of degrees of freedom of Student base density

hist If TRUE then aggregate x to histogram weights

weights replicate weights for x obervations, should sum to 1

... optional parameters passed to KWDual to control optimization

Details

Kiefer Wolfowitz MLE density estimation as proposed by Jiang and Zhang for a Student t com-
pound decision problem. The histogram option is intended for large problems, say n > 1000, where
reducing the sample size dimension is desirable. By default the grid for the binning is equally
spaced on the interval between the 0.01 and 0.99 quantiles of the observed sample. This is intended
to avoid extreme gridding for Student’s with small df.

Value

An object of class density with components:

x midpoints of evaluation on the domain of the mixing density

y estimated function values at the points x of the mixing density

logLik Log likelihood value at the proposed solution

dy Bayes rule estimates of location at x

status Mosek exit code

Author(s)

Roger Koenker
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References

Kiefer, J. and J. Wolfowitz Consistency of the Maximum Likelihood Estimator in the Presence of
Infinitely Many Incidental Parameters Ann. Math. Statist. 27, (1956), 887-906.
Jiang, Wenhua and Cun-Hui Zhang General maximum likelihood empirical Bayes estimation of
normal means Ann. Statist., 37, (2009), 1647-1684.
Koenker, R. and J. Gu, (2017) REBayes: An R Package for Empirical Bayes Mixture Methods,
Journal of Statistical Software, 82, 1–26.

See Also

GLmix for Gaussian version

Tncpmix NPMLE for Student t non-centrality parameter mixtures

Description

Kiefer Wolfowitz NPMLE for Student t non-centrality parameter mixtures Model: yig = mug +
eig, eig N(0, sigma2g) x is the vector of t statistics for all groups, which follows t dist if mug = 0,
and noncentral t dist if mug ̸= 0, with ncpg = µg/σg . This leads to a mixture of t distribution with
ncp as the mixing parameter. df (degree of freedom) is determined by the group size in the simplest
case.

Usage

Tncpmix(x, v = 300, u = 300, df = 1, hist = FALSE, weights = NULL, ...)

Arguments

x Data: Sample Observations
v bin boundaries defaults to equal spacing of length v
u bin boundaries for histogram binning: defaults to equal spacing
df Number of degrees of freedom of Student base density
hist If TRUE then aggregate x to histogram weights
weights replicate weights for x obervations, should sum to 1
... optional parameters passed to KWDual to control optimization

Value

An object of class density with components:

x midpoints of evaluation on the domain of the mixing density
y estimated function values at the points x of the mixing density
g estimated function values at the observed points of mixture density
logLik Log likelihood value at the proposed solution
dy Bayes rule estimates of location at x
status Mosek exit code
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Author(s)

Roger Koenker

References

Kiefer, J. and J. Wolfowitz Consistency of the Maximum Likelihood Estimator in the Presence of
Infinitely Many Incidental Parameters Ann. Math. Statist. 27, (1956), 887-906.

Koenker, R. and J. Gu, (2017) REBayes: An R Package for Empirical Bayes Mixture Methods,
Journal of Statistical Software, 82, 1–26.

See Also

GLmix for Gaussian version

traprule Integration by Trapezoidal Rule

Description

Integration by Trapezoidal Rule

Usage

traprule(x, y)

Arguments

x points of evaluation

y function values

Details

Crude Riemann sum approximation.

Value

A real number.

Author(s)

R. Koenker
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Umix NPMLE for Uniform Scale Mixtures

Description

Kiefer-Wolfowitz Nonparametric MLE for Uniform Scale Mixtures

Usage

Umix(x, ...)

Arguments

x Data: Sample Observations

... other parameters to pass to KWDual to control optimization

Details

Kiefer-Wolfowitz MLE for the mixture model Y ∼ U [0, T ], T ∼ G No gridding is required
since mass points of the mixing distribution, G, must occur at the data points. This formalism is
equivalent, as noted by Groeneboom and Jongbloed (2014) to the Grenander estimator of a mono-
tone density in the sense that the estimated mixture density, i.e. the marginal density of Y , is the
Grenander estimate, see the remark at the end of their Section 2.2. See also demo(Grenander).
Note that this refers to the decreasing version of the Grenander estimator, for the increasing version
try standing on your head.

Value

An object of class density with components:

x points of evaluation on the domain of the density

y estimated mass at the points x of the mixing density

g the estimated mixture density function values at x

logLik Log likelihood value at the proposed solution

status exit code from the optimizer

Author(s)

Jiaying Gu and Roger Koenker

References

Kiefer, J. and J. Wolfowitz Consistency of the Maximum Likelihood Estimator in the Presence of
Infinitely Many Incidental Parameters Ann. Math. Statist. Volume 27, Number 4 (1956), 887-906.

Groeneboom, P. and G. Jongbloed, Nonparametric Estimation under Shape Constraints, 2014,
Cambridge U. Press.
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velo Rotational Velocity of Stars

Description

A sample of rotational velocities of stars from Hoffleit and Warren (1991) similar to that previosly
considered by Pal, Woodroofe and Meyer (2007) and used by Koenker and Mizera (2010). The
demo(velo) illustrates fitted densities for three relatively weak concavity constraints corresponding
to −1/sqrt(f), −1/f and −1/f2 constrained to be concave. Note that last of these pushes the
optimization methods about as far as they can do.

Usage

velo

Format

A numeric vector with 3933 observations on one variable.

velo a numeric vector with rotational velocities.

Source

Hoffleit, D. and Warren, W. H. (1991). The Bright Star Catalog (5th ed.). Yale University Observa-
tory, New Haven.

References

Pal, J. K., Woodroofe, M. and Meyer, M. (2007). Estimating a Polya frequency function. In Com-
plex Datasets and Inverse Problems: Tomography, Networks and Beyond, (R. Liu, W. Strawderman,
and C.-H. Zhang, eds.). IMS Lecture Notes-Monograph Series 54 239-249. Institute of Mathemat-
ical Statistics. Koenker, R. and Mizera, I. (2010) Quasi-Concave Density Estimation, Annals of
Statistics, 38, 2998-3027.

Weibullmix NPMLE for Weibull Mixtures

Description

Kiefer-Wolfowitz NPMLE for Weibull Mixtures of scale parameter
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Usage

Weibullmix(
x,
v = 300,
u = 300,
alpha,
lambda = 1,
event = NULL,
hist = FALSE,
weights = NULL,
...

)

Arguments

x Survival times

v Grid values for mixing distribution

u Grid values for histogram bins, if needed

alpha Shape parameter for Weibull distribution

lambda Scale parameter for Weibull Distribution; must either have length 1, or length
equal to length(x) the latter case accommodates the possibility of a linear pre-
dictor

event censoring indicator, 1 if actual event time, 0 if censored

hist If TRUE aggregate to histogram counts

weights replicate weights for x obervations, should sum to 1

... optional parameters passed to KWDual to control optimization

Details

Kiefer Wolfowitz NPMLE density estimation for Weibull scale mixtures. The histogram option is
intended for relatively large problems, say n > 1000, where reducing the sample size dimension is
desirable. By default the grid for the binning is equally spaced on the support of the data. Parame-
terization: f(t|alpha, lambda) = alpha * exp(v) * (lambda * t )^(alpha-1) * exp(-(lambda * t)^alpha
* exp(v)); shape = alpha; scale = lambda^(-1) * (exp(v))^(-1/alpha) This version purports to handle
right censoring.

Value

An object of class density with components

x points of evaluation on the domain of the density

y estimated function values at the points x of the mixing density

logLik Log likelihood value at the proposed solution

dy Bayes Rule estimates of mixing parameter

status exit code from the optimizer
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Author(s)

Roger Koenker and Jiaying Gu

References

Kiefer, J. and J. Wolfowitz Consistency of the Maximum Likelihood Estimator in the Presence of
Infinitely Many Incidental Parameters Ann. Math. Statist. Volume 27, Number 4 (1956), 887-906.

Koenker, R. and J. Gu, (2017) REBayes: An R Package for Empirical Bayes Mixture Methods,
Journal of Statistical Software, 82, 1–26.

See Also

Gompertzmix

WGLVmix Weighted NPMLE of Longitudinal Gaussian Mean and Variances
Model

Description

A Kiefer-Wolfowitz procedure for ML estimation of a Gaussian model with dependent mean and
variance components and weighted longitudinal data. This version assumes a general bivariate
distribution for the mixing distribution. The defaults use a rather coarse bivariate gridding. In
contrast to the function GLVmix the full longitudinal data structure is required for this function and
the likelihood evaluation reflects this difference.

Usage

WGLVmix(y, id, w, u = 30, v = 30, ...)

Arguments

y A vector of observations

id A strata indicator vector of the same length

w A vector of weights

u A vector of bin boundaries for the mean effects

v A vector of bin boundaries for the variance effects

... optional parameters to be passed to KWDual to control optimization
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Value

A list consisting of the following components:

u midpoints of mean bin boundaries

v midpoints of variance bin boundaries

fuv the function values of the mixing density.

logLik log likelihood value for mean problem

du Bayes rule estimate of the mixing density means.

dv Bayes rule estimate of the mixing density variances.

A Constraint matrix

status Mosek convergence status

Author(s)

R. Koenker and J. Gu

References

Gu, J. and R. Koenker (2014) Heterogeneous Income Dynamics: An Empirical Bayes Perspective,
JBES,35, 1-16.

Koenker, R. and J. Gu, (2017) REBayes: An R Package for Empirical Bayes Mixture Methods,
Journal of Statistical Software, 82, 1–26.

See Also

WTLVmix for an implementation assuming independent heterogeneity, GLVmix for an implemen-
tation that assumes the availability of only the summary statistics but not the full longitudinal data
structure.

WGVmix WGVmix: Weighted Generalized Maximum Likelihood for Empirical
Bayes Estimation of Gamma Variances

Description

A Kiefer-Wolfowitz procedure for ML estimation of a Gaussian model with independent variance
components with weighted longitudinal data.
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Usage

WGVmix(
y,
id,
w,
v,
pv = 300,
eps = 1e-06,
rtol = 1e-06,
verb = 0,
control = NULL

)

Arguments

y A vector of observations

id A strata indicator vector of the same length

w A vector of weights

v A vector of bin boundaries for the variance effects

pv The number of variance effect bins, if u is missing

eps A tolerance for determining the support of the bins

rtol A tolerance for determining duality gap convergence tolerance in Mosek

verb A flag indicating how verbose the Mosek output should be

control Mosek control list see KWDual documentation

Details

See Gu and Koenker (2012?)

Value

An object of class density consisting of the following components:

x the variance bin boundaries

y the function values of the mixing density for the variances.

logLik the value of the log likelihood at the solution

status the mosek convergence status.

Author(s)

R. Koenker
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References

Gu Y. and R. Koenker (2017) Empirical Bayesball Remixed: Empirical Bayes Methods for Longi-
tudinal Data, J. of Applied Econometrics, 32, 575-599.

Koenker, R. and J. Gu, (2017) REBayes: An R Package for Empirical Bayes Mixture Methods,
Journal of Statistical Software, 82, 1–26.

WLVmix NPMLE for Longitudinal Gaussian Means and Variances Model with
Independent Prior

Description

A Kiefer-Wolfowitz NPMLE procedure for estimation of a Gaussian model with independent mean
and variance prior components with weighted longitudinal data. This version iterates back and forth
from Gamma and Gaussian forms of the likelihood.

Usage

WLVmix(y, id, w, u = 300, v = 300, eps = 1e-04, maxit = 2, ...)

Arguments

y A vector of observations

id A strata indicator vector indicating grouping of y

w A vector of weights corresponding to y

u A vector of bin boundaries for the mean effects

v A vector of bin boundaries for the variance effects

eps Convergence tolerance for iterations

maxit A limit on the number of allowed iterations

... optional parameters to be passed to KWDual to control optimization

Value

A list consisting of the following components:

u midpoints of the mean bin boundaries

fu the function values of the mixing density of the means

v midpoints of the variance bin boundaries

fv the function values of the mixing density of the variances.

logLik vector of log likelihood values for each iteration

du Bayes rule estimate of the mixing density means.

dv Bayes rule estimate of the mixing density variances.

status Mosek convergence status for each iteration
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Author(s)

J. Gu and R. Koenker

References

Gu, J. and R. Koenker (2015) Empirical Bayesball Remixed: Empirical Bayes Methods for Longi-
tudinal Data, J. Applied Econometrics, 32, 575-599.

Koenker, R. and J. Gu, (2017) REBayes: An R Package for Empirical Bayes Mixture Methods,
Journal of Statistical Software, 82, 1–26.

See Also

WGLVmix for a more general bivariate mixing distribution version and WTLVmix for an alternative
estimator exploiting a Student/Gamma decomposition

WTLVmix NPMLE for Longitudinal Gaussian Means and Variances Model

Description

A Kiefer-Wolfowitz NPMLE procedure for estimation of a Gaussian model with independent mean
and variance components with weighted longitudinal data. This version exploits a Student t decom-
position of the likelihood.

Usage

WTLVmix(y, id, w, u = 300, v = 300, ...)

Arguments

y A vector of observations

id A strata indicator vector indicating grouping of y

w A vector of weights corresponding to y

u A vector of bin boundaries for the mean effects

v A vector of bin boundaries for the variance effects

... optional parameters to be passed to KWDual to control optimization

Value

A list consisting of the following components:

u midpoints of the mean bin boundaries

fu the function values of the mixing density of the means

v midpoints of the variance bin boundaries

fv the function values of the mixing density of the variances.
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logLik log likelihood value for mean problem

du Bayes rule estimate of the mixing density means.

dv Bayes rule estimate of the mixing density variances.

status Mosek convergence status

Author(s)

J. Gu and R. Koenker

References

Koenker, R. and J. Gu, (2017) REBayes: An R Package for Empirical Bayes Mixture Methods,
Journal of Statistical Software, 82, 1–26.

See Also

WGLVmix for a more general bivariate mixing distribution version
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