Package: RCBR 0.6.2
RCBR: Random Coefficient Binary Response Estimation
Nonparametric maximum likelihood estimation methods for random coefficient binary response models and some related functionality for sequential processing of hyperplane arrangements. See J. Gu and R. Koenker (2020) <doi:10.1080/01621459.2020.1802284>.
Authors:
RCBR_0.6.2.tar.gz
RCBR_0.6.2.zip(r-4.5)RCBR_0.6.2.zip(r-4.4)RCBR_0.6.2.zip(r-4.3)
RCBR_0.6.2.tgz(r-4.5-any)RCBR_0.6.2.tgz(r-4.4-any)RCBR_0.6.2.tgz(r-4.3-any)
RCBR_0.6.2.tar.gz(r-4.5-noble)RCBR_0.6.2.tar.gz(r-4.4-noble)
RCBR_0.6.2.tgz(r-4.4-emscripten)RCBR_0.6.2.tgz(r-4.3-emscripten)
RCBR.pdf |RCBR.html✨
RCBR/json (API)
# Install 'RCBR' in R: |
install.packages('RCBR', repos = c('https://rudjer.r-universe.dev', 'https://cloud.r-project.org')) |
- Horowitz93 - Horowitz (1993) Modal Choice Data
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 years agofrom:5708e5c62a. Checks:9 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 31 2025 |
R-4.5-win | OK | Mar 31 2025 |
R-4.5-mac | OK | Mar 31 2025 |
R-4.5-linux | OK | Mar 31 2025 |
R-4.4-win | OK | Mar 31 2025 |
R-4.4-mac | OK | Mar 31 2025 |
R-4.4-linux | OK | Mar 31 2025 |
R-4.3-win | OK | Mar 31 2025 |
R-4.3-mac | OK | Mar 31 2025 |
Exports:bounds.KW2GHGH.seGK.controlKW.controlKWDualneighboursNICERNICERdpolycountpolyzoneprcbrrcbrrcbr.fitrcbr.fit.GKrcbr.fit.KW1rcbr.fit.KW2witness
Dependencies:FormulalatticeMatrixmvtnormorthopolynompolynomREBayesRmosek